Exam 2 Solutions

MTH 327H

1. (a) Let $\epsilon>0$ and let P be a partition of $[a, b]$ such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$. We may insist that $c=x_{j}$ for some $1<j<n$ by taking a refinement if necessary (this can only decrease the difference $U(P, f, \alpha)-L(P, f, \alpha)$). Let $P_{1}=\left\{a=x_{0} \leqslant\right.$ $\left.x_{1} \leqslant \cdots \leqslant x_{j}=c\right\}$ and $P_{2}=\left\{c=x_{j} \leqslant x_{j+1} \leqslant \cdots \leqslant x_{n}=b\right\}$. Then it follows immediately that

$$
\begin{aligned}
U(P, f, \alpha) & =U\left(P_{1}, f, \alpha\right)+U\left(P_{2}, f, \alpha\right) \\
L(P, f, \alpha) & =L\left(P_{1}, f, \alpha\right)+L\left(P_{2}, f, \alpha\right)
\end{aligned}
$$

We see that $U\left(P_{i}, f, \alpha\right)-L\left(P_{i}, f, \alpha\right)<\epsilon$ for $i=1,2$. Ergo f is integrable with respect to α. Furthermore we see that

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & <U(P, f, \alpha) \\
& =U\left(P_{1}, f, \alpha\right)+U\left(P_{2}, f, \alpha\right) \\
& \leqslant \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha+\epsilon
\end{aligned}
$$

Since ϵ was arbitary, we have $\int_{a}^{b} f d \alpha \leqslant \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha$. Repeating the argument using lower sums, we conclude that in fact

$$
\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha
$$

(b) Let α and β be monotone increasing functions on $[a, b]$. Let $P=\left\{a=x_{0} \leqslant x_{1} \leqslant\right.$ $\left.\cdots \leqslant x_{n}=b\right\}$ be any partition of $[a, b]$. Then

$$
\begin{aligned}
& U(P, \alpha, \beta)=\sum_{i=1}^{n} \alpha\left(x_{i}\right)\left[\beta\left(x_{i}\right)-\beta\left(x_{i-1}\right)\right] \\
& L(P, \alpha, \beta)=\sum_{i=1}^{n} \alpha\left(x_{i-1}\right)\left[\beta\left(x_{i}\right)-\beta\left(x_{i-1}\right)\right]
\end{aligned}
$$

so we see that

$$
U(P, \alpha, \beta)-L(P, \alpha, \beta)=\sum_{i=1}^{n}\left[\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right]\left[\beta\left(x_{i}\right)-\beta\left(x_{i-1}\right)\right] .
$$

Observe that this expression is symmetric in α and β, and therefore also equals $U(P, \beta, \alpha)-L(P, \beta, \alpha)$. Therefore given $\epsilon>0$, it is possible to choose P such that $U(P, \alpha, \beta)-L(P, \alpha, \beta)<\epsilon$ if and only if it is possible to choose P such that $U(P, \beta, \alpha)-L(P, \beta, \alpha)<\epsilon$. Ergo $\alpha \in \mathcal{R}(\beta)$ if and only if $\beta \in \mathcal{R}(\alpha)$.
2. (a) We use the change of variable formula. Let $s=\phi(x)=x^{3}$, so that $\phi^{\prime}(x)=3 x^{2}$. Then the change of variable formula implies that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} \int_{0}^{1} f\left(s^{\frac{1}{3}}\right) d s
$$

Now consider the function $F(t)=\frac{1}{3} \int_{0}^{t} f\left(s^{\frac{1}{3}}\right) d s$. By the Fundamental Theorem, $F^{\prime}(t)=\frac{1}{3} f\left(s^{\frac{1}{3}}\right)$. Then the Mean Value Theorem implies that there exists $b \in(0,1)$ such that

$$
F(1)-F(0)=\frac{1}{3} f\left(b^{\frac{1}{3}}\right)
$$

But $F(0)=0$ and $F(1)=\frac{1}{3} \int_{0}^{1} f\left(s^{\frac{1}{3}}\right) d s=\int_{0}^{1} f(x) x^{2} d x$. So if we let $a=b^{\frac{1}{3}}$, we see that there is some $a \in(0,1)$ for which

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(a) .
$$

(b) Observe that since each derivative $f^{(m)}$ is differentiable on [0, 1], it is in particular continuous on $[0,1]$. Let $U_{m}=\left(f^{(m)}\right)^{-1}(\mathbb{R}-\{0\})$. By continuity, U_{i} is open; by assumption, the open sets U_{i} cover $[0,1]$. Since $[0,1]$ is compact, this implies some finite collection $U_{1}, U_{1}, \ldots, U_{M}$ cover $[0,1]$. Hence for any $x \in[0,1]$ there is some $m \leqslant M$ for which $f^{(m)}(x) \neq 0$.
3. (a) We observe that the condition on f trivially implies that f is continuous (indeed, uniformly continuous).
First, if $\alpha=0$ then $f: X \rightarrow X$ is constant with $f(X)=\{p\}$ for some point $p \in X$, and therefore f fixes exactly p.
Now assume $\alpha \in(0,1)$. Observe that f has at most one fixed point: if $f(p)=p$ and $f(q)=q$, then $d(f(p), f(q))=d(p, q)>\alpha d(p, q)$. So it suffices to find a single fixed point of f.
Choose any $x \in X$. Consider the sequence $\left(x, f(x), f^{2}(x), \ldots\right)$ with $s_{0}=x$ and $s_{n}=f^{n}(x)$. Let $\beta=d(x, f(x))$, such that $d\left(f^{n}(x), f^{n+1}(x)\right) \leqslant \alpha^{n} \beta$. I claim that $\left\{s_{n}\right\}$ is a Cauchy sequence. For given $\epsilon>0$, I may choose N such that $\epsilon>\alpha^{N} \cdot \frac{\beta}{1-\alpha}$. Then given $n<m>N$, I have

$$
\begin{aligned}
d\left(f^{n}(x), f^{m}(x)\right) & \leqslant \sum_{i=n}^{m-1} d\left(f^{i}(x), f^{i+1}(x)\right) \\
& \leqslant \sum_{i=n}^{m-1} \alpha^{i} \beta \\
& \leqslant \alpha^{n} \beta \sum_{i=0}^{m-n-1} \alpha^{i} \\
& \leqslant \alpha^{N} \beta \cdot \frac{1}{1-\alpha} \\
& <\epsilon
\end{aligned}
$$

But X is complete, so Cauchy sequences converge. Hence $s_{n} \rightarrow p$ for some p. But $\left\{f\left(s_{n}\right)\right\}$ is the same sequence with s_{0} deleted, and must also converge to p. By continuity, $f(p)=p$.
(b) For example $f(x)=\arctan x-1$ on $[-1, \infty)$. We observe that the derivative of the arctangent function is $f^{\prime}(x)=\frac{1}{1+x^{2}}$, hence $0<f^{\prime}(x)<1$ for all x. Therefore given $a<b \in[-1, \infty)$, by the Mean Value Theorem we have $f(b)-f(a)=f^{\prime}(x)(b-a)$ for some $x \in(a, b)$, hence $|f(b)-f(a)|<|b-a|$. But if $g(x)=x-(\arctan x-1)$, we see $g(-1)=\frac{\pi}{4}>0$ and $g^{\prime}(x)=1-\frac{1}{1+x^{2}}>0$, so g is increasing and therefore nonzero on $[-1, \infty)$. Ergo f has no fixed point on $[-1, \infty)$.
(c) We observe that g is clearly continuous. Consider the function $h: X \rightarrow R$ given by $d(p, h(p))$. This is a continuous real-valued function off a compact set. Hence h attains its bounds. Let $a=\inf h(x) \geqslant 0$. Then there is some p such that $h(p)=a$, that is, such that $d(p, g(p))=a$. But then if $a \neq 0, d\left(g(p), g^{2}(p)\right)<a$ by assumption. This is a contradiction. So $d(p, g(p))=0$, and p is a fixed point of g.
(d) Consider $f:\left[0, \frac{1}{2}\right] \rightarrow\left[0, \frac{1}{2}\right]$ given by $f(x)=x-x^{2}$. If $0 \leqslant x<y \leqslant \frac{1}{2}$, we have

$$
\begin{aligned}
f(y)-f(x) & =\left(y-y^{2}\right)-\left(x-x^{2}\right) \\
& =(y-x)-(y-x)(y+x) \\
& =(1-y-x)(y-x) \\
& <y-x
\end{aligned}
$$

4. (a) The number of n-digit positive integers containing no 0 is 9^{n}, and the reciprocal of each such integer is no more than $\frac{1}{10^{n-1}}$. Therefore the sum of this series is less than or equal to

$$
\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n-1}}=9 \sum_{n=0}^{\infty}\left(\frac{9}{10}\right)^{n}=\frac{9}{1-\frac{9}{10}}=90
$$

(b) Suppose $\sum b_{n}$ converges. Choose a real number $d>c$. Then there exists N such that $n \geqslant N$ implies that $\frac{a_{n}}{b_{n}}<d$, so in particular $0<a_{n}<d b_{n}$. Now $d b_{n}$
converges, so by the Comparison Test a_{n} converges. Similarly, since $\lim \frac{b_{n}}{a_{n}}=\frac{1}{c}$ is also a positive real, convergence of $\sum a_{n}$ implies convergence of $\sum b_{n}$. We conclude that $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.
5. (a) First, observe that the set of real continuous functions on \mathbb{R} is certainly not countable; the constant functions form a subset having the cardinality of \mathbb{R}. Now recall that a continuous function on \mathbb{R} is determined by the values it takes on \mathbb{Q}. Indeed, if $\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$ is an enumeration of the rationals, we may write out the decimal expansions of $\left\{f\left(r_{1}\right), f\left(r_{2}\right), f\left(r_{3}\right), \ldots\right\}$ and collect terms along the diagonals to show f is determined by a single real number. (Since we are presently trying to prove that the cardinality of the set of real continuous functions on \mathbb{R} is no more than the cardinality of \mathbb{R}, possible duplication is irrelevant here.) We conclude that the set of real continuous functions has the same cardinality as \mathbb{R}.
(b) No; consider the function $f(x)=\frac{1}{x-\sqrt{2}}$.
6. (a) This is impossible; $[0,1]$ is compact, and therefore its image under a continuous function is compact, but $(0,1)$ is not compact.
(b) We may use the function

$$
f(x)= \begin{cases}0 & 0<x \leqslant \frac{1}{4} \\ 2 x-\frac{1}{2} & \frac{1}{4} \leqslant x \leqslant \frac{3}{4} \\ 1 & \frac{3}{4}<x<1\end{cases}
$$

(c) This is impossible.

Lemma: An injective continuous function $f:(a, b) \rightarrow \mathbb{R}$ is necessarily strictly monotone.
Proof: Suppose not. Then we may find three points $x<y<z$ in (a, b) such that either $f(x)<f(y)$ and $f(y)>f(z)$ or $f(x)>f(y)$ and $f(y)<f(z)$. (These are all strict inequalities because of injectivity.) Focusing on the first case, we may choose a real number c such that $f(x), f(z)<c<f(y)$. Then the Intermediate Value Theorem implies that there is some $w_{1} \in(x, y)$ such that $f\left(w_{1}\right)=c$ and some $w_{2} \in(y, z)$ such that $f\left(w_{2}\right)=c$. This contradicts injectivity. So f is strictly monotone.
Now, suppose there exists a continuous bijection $f:[0,1] \rightarrow(0,1)$. Then it must be strictly monotone. But from class, the inverse of a continuous strictly monotone function is also continuous, so f^{-1} is a continuous map from $(0,1)$ onto $[0,1]$. As observed in part (a), this is impossible because of the compactness of $[0,1]$. so no such f exists.
7. (a) Positivity and symmetry are clear. For the triangle inequality, given f, g, h : $[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
\int_{0}^{1}|f-g| d x & \leqslant \int_{0}^{1}(|f-h|+|h-g|) d x \\
& =\int_{0}^{1}|f-h| d x+\int_{0}^{1}|h-g| d x
\end{aligned}
$$

as desired.
(b) Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ for $n \geqslant 2$ defined by

$$
f_{n}(x)= \begin{cases}n^{3} x & 0 \leqslant x \leqslant \frac{1}{n^{2}} \\ 2 n-n^{3} x & \frac{1}{n^{2}}<x \leqslant \frac{2}{n^{2}} \\ 0 & x>\frac{2}{n^{2}}\end{cases}
$$

Each function f_{n} is continuous, ergo integrable, and $\int_{0}^{1}\left|f_{n}\right| d x=\int_{0}^{1} f_{n} d x=\frac{1}{n}$. Ergo in the ℓ^{1} metric $\left\{f_{n}\right\}$ converges to the zero function. However, in the ℓ^{∞} metric, the sequence $\left\{f_{n}\right\}$ is unbounded, ergo not convergent.
The other direction is impossible: We have $\ell^{1}(f, g)=\int_{0}^{1}|f-g| d x \leqslant \sup _{x \in[0,1]} \mid f-$ $g \mid(1-0)=\ell^{\text {infty }}(f, g)$. So any sequence that converges with respect to ℓ^{∞} also converges with respect to ℓ^{1}.
8. (a) Consider the function $j(x)=f(1-x)$, which is clearly infinitely differentiable and nonzero exactly on $(-\infty, 1)$. The function $g(x)=f(x) j(x)$ then satisfies the indicated conditions is then infinitely differentiable and nonzero on exactly $(0,1)$.
(b) Consider the function $h(x)=\frac{f(x)}{f(x)+j(x)}$, where $j(x)$ is as in part (a). We observe that $f(x)+j(x) \neq 0$ on \mathbb{R}, so $h(x)$ is differentiable and indeed infinitely differentiable. On $x \leqslant 0$, we have $h(x)=\frac{0}{j(x)}=0$, and on $x \geqslant 1$, we have $h(x)=\frac{f(x)}{0+j(x)}$.

This example, or rather its generalization to \mathbb{R}^{n}, is one of the foundational tools of differential geometry.

