
Exam 2 Solutions
MTH 327H

1. (a) Let ε ¡ 0 and let P be a partition of ra, bs such that UpP, f, αq � LpP, f, αq   ε.
We may insist that c � xj for some 1   j   n by taking a refinement if necessary
(this can only decrease the difference UpP, f, αq�LpP, f, αq). Let P1 � ta � x0 ¤
x1 ¤ � � � ¤ xj � cu and P2 � tc � xj ¤ xj�1 ¤ � � � ¤ xn � bu. Then it follows
immediately that

UpP, f, αq � UpP1, f, αq � UpP2, f, αq

LpP, f, αq � LpP1, f, αq � LpP2, f, αq

We see that UpPi, f, αq � LpPi, f, αq   ε for i � 1, 2. Ergo f is integrable with
respect to α. Furthermore we see that» b

a

fdα   UpP, f, αq

� UpP1, f, αq � UpP2, f, αq

¤

» c
a

fdα�

» b
c

fdα� ε

Since ε was arbitary, we have
³b
a
fdα ¤

³c
a
fdα �

³b
c
fdα. Repeating the argument

using lower sums, we conclude that in fact» b
a

fdα �

» c
a

fdα�

» b
c

fdα.

(b) Let α and β be monotone increasing functions on ra, bs. Let P � ta � x0 ¤ x1 ¤
� � � ¤ xn � bu be any partition of ra, bs. Then

UpP, α, βq �
ņ

i�1

αpxiqrβpxiq � βpxi�1qs

LpP, α, βq �
ņ

i�1

αpxi�1qrβpxiq � βpxi�1qs

so we see that

UpP, α, βq � LpP, α, βq �
ņ

i�1

rαpxiq � αpxi�1qsrβpxiq � βpxi�1qs.

Observe that this expression is symmetric in α and β, and therefore also equals
UpP, β, αq � LpP, β, αq. Therefore given ε ¡ 0, it is possible to choose P such
that UpP, α, βq �LpP, α, βq   ε if and only if it is possible to choose P such that
UpP, β, αq � LpP, β, αq   ε. Ergo α P Rpβq if and only if β P Rpαq.



2. (a) We use the change of variable formula. Let s � φpxq � x3, so that φ1pxq � 3x2.
Then the change of variable formula implies that

» 1

0

fpxqx2dx �
1

3

» 1

0

fps
1
3 qds

Now consider the function F ptq � 1
3

³t
0
fps

1
3 qds. By the Fundamental Theorem,

F 1ptq � 1
3
fps

1
3 q. Then the Mean Value Theorem implies that there exists b P p0, 1q

such that

F p1q � F p0q �
1

3
fpb

1
3 q

But F p0q � 0 and F p1q � 1
3

³1
0
fps

1
3 qds �

³1
0
fpxqx2dx. So if we let a � b

1
3 , we see

that there is some a P p0, 1q for which

» 1

0

fpxqx2dx �
1

3
fpaq.

(b) Observe that since each derivative f pmq is differentiable on r0, 1s, it is in particular
continuous on r0, 1s. Let Um � pf pmqq�1pR � t0uq. By continuity, Ui is open; by
assumption, the open sets Ui cover r0, 1s. Since r0, 1s is compact, this implies
some finite collection U1, U1, . . . , UM cover r0, 1s. Hence for any x P r0, 1s there is
some m ¤M for which f pmqpxq � 0.

3. (a) We observe that the condition on f trivially implies that f is continuous (indeed,
uniformly continuous).

First, if α � 0 then f : X Ñ X is constant with fpXq � tpu for some point p P X,
and therefore f fixes exactly p.

Now assume α P p0, 1q. Observe that f has at most one fixed point: if fppq � p
and fpqq � q, then dpfppq, fpqqq � dpp, qq ¡ αdpp, qq. So it suffices to find a single
fixed point of f .

Choose any x P X. Consider the sequence px, fpxq, f 2pxq, . . . q with s0 � x and
sn � fnpxq. Let β � dpx, fpxqq, such that dpfnpxq, fn�1pxqq ¤ αnβ. I claim that
tsnu is a Cauchy sequence. For given ε ¡ 0, I may choose N such that ε ¡ αN � β

1�α .
Then given n   m ¡ N , I have



dpfnpxq, fmpxqq ¤
m�1̧

i�n
dpf ipxq, f i�1pxqq

¤
m�1̧

i�n
αiβ

¤ αnβ
m�n�1¸
i�0

αi

¤ αNβ �
1

1 � α

  ε

But X is complete, so Cauchy sequences converge. Hence sn Ñ p for some p. But
tfpsnqu is the same sequence with s0 deleted, and must also converge to p. By
continuity, fppq � p.

(b) For example fpxq � arctanx�1 on r�1,8q. We observe that the derivative of the
arctangent function is f 1pxq � 1

1�x2 , hence 0   f 1pxq   1 for all x. Therefore given
a   b P r�1,8q, by the Mean Value Theorem we have fpbq � fpaq � f 1pxqpb� aq
for some x P pa, bq, hence |fpbq � fpaq|   |b� a|. But if gpxq � x� parctanx� 1q,
we see gp�1q � π

4
¡ 0 and g1pxq � 1 � 1

1�x2 ¡ 0, so g is increasing and therefore
nonzero on r�1,8q. Ergo f has no fixed point on r�1,8q.

(c) We observe that g is clearly continuous. Consider the function h : X Ñ R given
by dpp, hppqq. This is a continuous real-valued function off a compact set. Hence
h attains its bounds. Let a � inf hpxq ¥ 0. Then there is some p such that
hppq � a, that is, such that dpp, gppqq � a. But then if a � 0, dpgppq, g2ppqq   a
by assumption. This is a contradiction. So dpp, gppqq � 0, and p is a fixed point
of g.

(d) Consider f : r0, 1
2
s Ñ r0, 1

2
s given by fpxq � x� x2. If 0 ¤ x   y ¤ 1

2
, we have

fpyq � fpxq � py � y2q � px� x2q

� py � xq � py � xqpy � xq

� p1 � y � xqpy � xq

  y � x

4. (a) The number of n-digit positive integers containing no 0 is 9n, and the reciprocal
of each such integer is no more than 1

10n�1 . Therefore the sum of this series is less
than or equal to

8̧

n�1

9n

10n�1
� 9

8̧

n�0

�
9

10


n
�

9

1 � 9
10

� 90

(b) Suppose
°
bn converges. Choose a real number d ¡ c. Then there exists N such

that n ¥ N implies that an
bn

  d, so in particular 0   an   dbn. Now dbn



converges, so by the Comparison Test an converges. Similarly, since lim bn
an
� 1

c
is

also a positive real, convergence of
°
an implies convergence of

°
bn. We conclude

that
°
an and

°
bn either both converge or both diverge.

5. (a) First, observe that the set of real continuous functions on R is certainly not
countable; the constant functions form a subset having the cardinality of R. Now
recall that a continuous function on R is determined by the values it takes on
Q. Indeed, if tr1, r2, r3, . . . u is an enumeration of the rationals, we may write
out the decimal expansions of tfpr1q, fpr2q, fpr3q, . . . u and collect terms along the
diagonals to show f is determined by a single real number. (Since we are presently
trying to prove that the cardinality of the set of real continuous functions on R
is no more than the cardinality of R, possible duplication is irrelevant here.) We
conclude that the set of real continuous functions has the same cardinality as R.

(b) No; consider the function fpxq � 1
x�?2

.

6. (a) This is impossible; r0, 1s is compact, and therefore its image under a continuous
function is compact, but p0, 1q is not compact.

(b) We may use the function

fpxq �

$'&
'%

0 0   x ¤ 1
4

2x� 1
2

1
4
¤ x ¤ 3

4

1 3
4
  x   1

(c) This is impossible.

Lemma: An injective continuous function f : pa, bq Ñ R is necessarily strictly
monotone.

Proof: Suppose not. Then we may find three points x   y   z in pa, bq such that
either fpxq   fpyq and fpyq ¡ fpzq or fpxq ¡ fpyq and fpyq   fpzq. (These are
all strict inequalities because of injectivity.) Focusing on the first case, we may
choose a real number c such that fpxq, fpzq   c   fpyq. Then the Intermediate
Value Theorem implies that there is some w1 P px, yq such that fpw1q � c and
some w2 P py, zq such that fpw2q � c. This contradicts injectivity. So f is strictly
monotone.

Now, suppose there exists a continuous bijection f : r0, 1s Ñ p0, 1q. Then it must
be strictly monotone. But from class, the inverse of a continuous strictly monotone
function is also continuous, so f�1 is a continuous map from p0, 1q onto r0, 1s. As
observed in part (a), this is impossible because of the compactness of r0, 1s. so no
such f exists.

7. (a) Positivity and symmetry are clear. For the triangle inequality, given f, g, h :
r0, 1s Ñ R, we have



» 1

0

|f � g|dx ¤

» 1

0

p|f � h| � |h� g|qdx

�

» 1

0

|f � h|dx�

» 1

0

|h� g|dx

as desired.

(b) Consider the sequence of functions fn : r0, 1s Ñ R for n ¥ 2 defined by

fnpxq �

$'&
'%
n3x 0 ¤ x ¤ 1

n2

2n� n3x 1
n2   x ¤ 2

n2

0 x ¡ 2
n2

Each function fn is continuous, ergo integrable, and
³1
0
|fn|dx �

³1
0
fndx �

1
n
. Ergo

in the `1 metric tfnu converges to the zero function. However, in the `8 metric,
the sequence tfnu is unbounded, ergo not convergent.

The other direction is impossible: We have `1pf, gq �
³1
0
|f � g|dx ¤ supxPr0,1s|f �

g|p1 � 0q � `inftypf, gq. So any sequence that converges with respect to `8 also
converges with respect to `1.

8. (a) Consider the function jpxq � fp1 � xq, which is clearly infinitely differentiable
and nonzero exactly on p�8, 1q. The function gpxq � fpxqjpxq then satisfies the
indicated conditions is then infinitely differentiable and nonzero on exactly p0, 1q.

(b) Consider the function hpxq � fpxq
fpxq�jpxq , where jpxq is as in part (a). We observe

that fpxq � jpxq � 0 on R, so hpxq is differentiable and indeed infinitely differ-

entiable. On x ¤ 0, we have hpxq � 0
jpxq � 0, and on x ¥ 1, we have hpxq � fpxq

0�jpxq .

This example, or rather its generalization to Rn, is one of the foundational tools
of differential geometry.


