Exam 1 Solutions

MTH 327H

1. (a) For any (z,y) in R? we see that

di((z,y), (@ y)? = (@ —2") + (y—vy)
(=2 +2z—2|ly—y'|+ (y—y)?
(lz =) + |y —¢/])°

do((z,y), («',9/)),

so di((z,y), (', y") < do((x,y), («',y")). Moreover,

/AN

ds((z,y), (2, y))* = sup{(z — 2')*, (y — ¥)*}
<@—-2)+@y—vy)
= di((z,y), («',9))?,

ds((z,y), (', ¢) < du((2,9), (1)) < do((2,9), (2, 9)).

Now observe that

di((z,y), (', y) = /(& — ') + (y — y)?
< v/ 2(sup{|z — 2/], [y — ¥/[})?
— V2d5((z, ), (', 1/)).

Moreover clearly da((z,y), (z',y')) < 2ds5((x,y), (¢/,y')). So in general we have

dg((l’, Y), (xla Yy < dl((x7 y)? (Ila yl)) < \/idg((l’, y)? (Ila yl))
ds((,y), («",y)) < da((,y), (2, ¢)) < 2d5((,p), («", ¢/))
di((z,y), (¢, y) < do((2,y), (¢, ¢)) < 2d1((2,y), (¢, ¥))

(b)If we have two metrics d and d’ on a space X, in order to show that if a set U
is open in (X, d) then it is open in (X, d'), it suffices to show that any neighborhood
Né(p) = {qe X : d(p,q) < r} contains a neighborhood N% (p) = {ge€ X : d(p,q) < r'}.
For then if U < X and p is an interior point of U with respect to the metric (X, d),
then p is also an interior point of U with respect to the metric d'.

So if there exist 0 < a < f such that ad(p,q) < d'(p,q) < Bd(p, q), this implies that
for r € R, we have N? (p) < N%(p) and N% (p) = N¥(p). Hence strongly equivalent

metrics induce the same topology.



2. (a) Since we already know R is a field, it suffices to check that Q(+/2) is closed under
addition and multiplication, is closed under taking additive and multiplicative inverses,
and contains 0 and 1. Clearly 0,1 € Q(+v/2). Moreover (a + bv/2) + (c + dv2) =
(a+b) + (c + d)v/2 and (a + bv2)(c + dv2) = (ac + 2bd) + (ad + be)y/2. Since the
rationals are closed under addition and multiplication, we see that Q(+/2) is as well.
Finally, if a + bv/2 € Q(+/2), then its additive inverse —a — by/2 is also in Q(v/2), as is

its multiplicative inverse, 5> — a%—%lﬂﬂ

(b) Let @ be an order on Q(+/2) which gives it the structure of an ordered field. First,
we know that there is exactly one way of making QQ into an ordered field, so for numbers
of the form a = a—i—O«/ﬁ, we must have a < b < aH]b.

Now we observe that if 0 H] p, ¢ are distinct positive numbers and p? 0 ¢?, then p Hlq.
For if ¢ Hlp, then ¢*> HlgpHIp? after applying Proposition 1.18(b) twice.

Suppose that 0 H] v/2. Then for any rational b such that 0 H] b, we have 0 H] b\/i, and
(bv/2)? = 2b? is rational with 0 {J2b?. Since we know how to order the rationals, and
we know how to order any positives if we know how to order their squares, we conclude
that for numbers z, 2’ each of which of the form a + 0v/2 or 0 + bv/2 for a,b > 0, we
must have x H] 2’ < x < 2’/. Taking additive inverses implies that the same is true of
all elements of the form a + 04/2 or 0 + bv/2 such that a,b e Q.

Now, consider a+bv/2 and ¢+ d+/2. We see that a+bv2Hc+dv2 < a—cHld—bv2 <
a—c<d—b/2 < a+by2 < c+dyv2. So we have ordered all elements of Q(+/2), and
the order is the order inherited from R.

The second case is v/2H] 0. We can repeat the argument above using —v/2 in place of
v/2 to show this uniquely determines a second order on Q(+/2).(This corresponds to
the fact that 2 has a positive and a negative square root and the construction of this
field doesn’t notice which one we chose.)

3. (a) Let A = {z} and B be closed. Let S = {d(z,y) : y € B} and o = d(A, B) = inf S.
For all n € N — {0}, a + % is not a lower bound for S, so we can choose y, such that
d(z,yn) < a+=. Then {y,} © Nay1(z), so {y,} is a bounded sequence in R¥, implying
that {y,} has a convergent subsequence y,, — y. Since B is closed, y € B. Given any
m > 0, choose K such that k > K implies d(y,,,y) < % Then for n, > max{ng,m},
we have d(z,y) < d(@,yn,) + d(Yn,,y) < @+ =+ - = a+ 2. As m was arbitrary,
d(z,y) = a.

(b) Let A be compact and B be closed. Then let S = {d(x,y) : z € A,y € B} and
a = d(A,B) = infS. For all n € N = {0}, pick x, € A and y, in B such that
d(zn,yn) < a+ L. As Ais compact, some subsequence z,, converges to a point z in A.
Then for any m € N—{0}, there exists K such that k > K implies that d(z,, ) < 5-.
For k = max{K, 2m}, we have d(z, yn, ) < d(x, Tp, ) +d(Tpy, Yny) < 50 +OF 5= = At 5.
Since B is closed we are now in a position to repeat the argument from part (a) to
conclude there is a point y € B such that d(z,y) = a.

(¢) Consider the sets A = N—{0} and B = {n+ 5~ : n € N—{0}}. These sets are both
closed (neither of them have limit points), and A n B = &, but d(A, B) = 0.



4. (a) No; consider the sequence s, = n. I claim this is Cauchy. For given ¢ > 0, choose
N such that 1 < e. Then if n,m = N, we have d(s,, sm) < |+ — L] < &+ < e So

m
this sequence is Cauchy. However, suppose it converges to some z € [1,00). Then let

€ = % for some k a positive natural. By assumption, there exists N such that n > N

implies % > d(z,s,) = |% — % . For n large enough, this implies that % > % — % > 0,
and therefore % > % Hence x > k. But k was arbitrary, so no such x exists.

(b) No; consider [1,00) itself. Notice for any z € [1,00), d(1,z) = |1 — 2] < 1, so
[1,00) = Ni(x) and [1,00) is bounded. Morever it is closed as a subset of itself, as all
metric spaces are. But it is certainly not compact, since by part (a) it is not complete.

(Identifying this space with (0, 1] with the standard metric and solving the problem
that way is also a fine solution.)

5. (a) Let (z,y) € X x Y. Then

Y)

y') ssup{dx(z,2"),dy (y,y)} <7}
T ,y') : dx($,$l),dY(yay/) <r}

y') 2" e Np(x),y € N.(y)}

) x

(b) Since compactness is not relative, it suffices to prove the statement for X = K and
Y = L. First, observe that for any F < X and y € Y, if (z,y) and (2/,y) are points in
E x{y} € X xY, then d((z,y), (2',y)) = dx(z,2’). So the inherited metric on E x {y}
is exactly the metric on E. Similarly if F' < Y, the inherited metric on {x} x F agrees
with the metric on F' for all z.

First suppose X x Y is compact. Pick some y € Y. Then X x {y} is a copy of X in
X xY. Moreover I claim X x {y} is closed, since if (2, ') ¢ X x{y} then Ny, (y,»(2',¥)
contains no point of X x {y}. Ergo X x {y} is a closed subset of a compact set, hence
compact. We conclude that X is compact. Likewise Y is compact.

In the other direction, suppose that X is compact and Y is compact. Let {U,} be
an open cover of X x Y. Given y € Y, the set X x {y} is compact, so we can pick
finitely many U7, ..., U} which cover X x {y}. Indeed, for any z € X, there is a
neighborhood V, = N, ((z,y)) = N,,(z) x N, (y) contained in U; for some j. Since
X x {y} is compact, we can choose finitely many V,,,...,V, ~which cover X x {y}.
Then if r, = min{ry,, ..., 75, }, we see that X x N, (y) ¢ i, V, < v U/, But Y is
compact, so we can choose finitely many 1, . . ., y, such that the neighborhoods N, (y;)
cover Y. Then X x Y is covered by the finite subcover {U;” : 1 < j <k,1 < /(< Ny, }

of {U,}. Since {U,} was arbitrary, we conclude that X x Y is compact.

[There is also a faster proof of this using subsequences. Exercise!]

6. (a) Let 2, = nn — 1. By Theorem 3.3(a), it suffices to check that z,, — 0, since then



nw = r, +1 — 1. Now observe that x, = 0, and furthermore

n=(1+xz,)"

_ Zn: n! o

= (n—k)ET

n! 9

> —

(n—2)20"n
n(n — l)xi

2

We conclude that 0 < z,, < v/2n — 1. Now for € > 0, choose N such that N > 1— 6%, SO
that v/2N — 1 < e. We see that n > N implies that |z, — 0| = |2,| =z, <v2n—1 <
V2N —1 <€ So x, — 0 as desired.
(b) Let s, — 0 and (¢,) be bounded, say |t,| < M. Then for any ¢ > 0, choose N

such that n > N implies that |s,| = |s, — 0] < ;7. We see that if n > N, we have
|Sntn — O] = [sptn| < |su|M < 57 - M = €. As € was arbitary, we have s,t, — 0.

. (a) Consider the set S = {0} U {+t :neN—{0}} u{= + +:n,meN—{0},n>m}.
Clearly 0 and -- for all m € N— {0} are limit point of S. We must check it has no other
limit points. Certainly if x € R has < 0 or > 2, then = has some neighborhood
containing no point of S and is therefore not a limit point of S. Furthermore, if

z € [0,2] is not 0 or - for some m, then choose m such that —= < z < L. Then

m+1
pick e = jmin{z — —1= L — 2} Then the neighborhood N(z) about z has finite
intersection with S, consisting only of pairs - + & such that + > j(z — —15). Hence

x is not a limit point of S. So S is closed; since it is also bounded and is a subset of
R, S is compact.

(b) Consider the set of points in [0, 1] with only 4’s and 7’s in their decimal expan-
sions from class. We translate this set by adding .10100100010000100000... to all
of its elements. The result is a set of elements whose decimal expansions never be-
come repeating. This set is still perfect, since we did not change its topology via the
translation.

. (a) Let x = (21,29, ...) be an element of S. Let r > 0, and let k be the largest integer
such that 5z < 7. Then N, (x) = {(y1,¥2,...) 1 ¥ = Vi < k}. Moreover, if y is any
element of N,(x), we see that N,.(x) = N,(y). Now suppose the intersection of two
neighborhoods N, (z) and N,(z) is nonempty. Wlog let r > s. Choose some y in the
intersection. Then N, (z) = N,(y) and Ny(z) = Ns(y), and therefore N,(z) = N,(y) <
Ne(y) = Np().

(b) Let {z'} = {(z},%,...)} be a sequence which converges to some z in S. Then
for any k > 0 an integer, there exists N such that n > N implies that d(z",z) < 2%,
implying that 2} = x; for all 1 < j < k. Since n was arbitrary, any z" and 2™ for
which n,m > N have the same first k entries. So the convergent sequences in S are
exactly those sequences such that for all k, there exists N such n,m > N implies that

i =zl forall 1 < j <k,



