
MTH 320, Section 003
Analysis

Sample Midterm 2

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a
total of fifty points. You may not use any books or notes. Partial credit will be given for progress
toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the
back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Problem 1.

(a) [5pts.] Let f : R→ R. What does it mean to say that f is continuous at x0?

Solution: We say that f is continuous at x0 if for every sequence of real num-
bers (xn) such that xn → x0, we have f(xn)→ f(x0).

(b) [5pts.] A set S is said to be dense in R if every open interval contains a point in
S. (For example, both the rationals and the irrationals are dense in R.) Suppose S
is dense in R, f, g : R → R are continuous on R, and f(s) = g(s) for every s ∈ S.
Prove that f(x) = g(x) for every x ∈ R.

Solution: Suppose that x /∈ S. Then for every n ∈ N, we can find an sn ∈ S
lying in (x− 1

n
, x+ 1

n
). Then by construction sn → x. Ergo f(x) = lim f(sn) =

lim g(sn) = g(x), since f and g are equal on S. Ergo f and g are equal on all of
R.

Problem 2.
For each of the following, either give an example of a power series with the given prop-
erties, or prove that one cannot exist.

(a) [3pts.] A power series with interval of convergence (0, 2].

Solution: Note that the center of this power series, if it exists, is 1, and the
radius of convergence is 1. Consider the power series

∑∞
n−1

(−1)n
n

(x− 1)n. Then

we see that limn→∞
|an+1|
|an| = limn→∞

n
n+1

= 1, so the radius of convergence of this

power series is R = 1. Hence the power series converges absolutely on (0, 2), and

diverges on |x− 1| > 1. At x = 0 we have the power series
∑∞

n=1
(−1)n
n

(−1)n =∑∞
n=1

1
n
, which diverges. At x = 2 we have

∑∞
n=1

(−1)n
n

(1)n =
∑∞

n=1
(−1)n
n

, which
converges. Ergo the interval of convergence of this power series is (0, 2].

(b) [4pts.] A power series which converges uniformly on its interval of convergence.

Solution: Consider the series
∑∞

n=1
1
n2x

n. From lecture, the interval of con-
vergence of this power series is [−1, 1]. In particular, we observe that for any
x in[−1, 1], | 1

n2x
n| ≤ | 1

n2 |, and
∑

1
n2 converges absolutely. Ergo by the Weier-

strass M-test, the power series converges uniformly on [−1, 1].

(c) [3pts.] A power series with interval of convergence [2, 3].

Solution: Note that the center of this power series, if it exists, is 5
2

and the ra-

dius of convergence is 1
2
. Consider

∑∞
n=0

2n

n2 (x− 5
2
)n. We see that limn→∞

|an+1|
|an| =

limn→∞
2n+1(n)2

2n(n+1)2
= 2, so the radius of convergence of this power series is R = 1

2
.



Hence the power series converges absolutely on (2, 3), and diverges on |x− 5
2
| > 1

2
.

At the endpoint x = 2 we have
∑∞

n=1
2n

n2 (−1
2
)n =

∑∞
n=1

(−1)n
n2 , which converges.

At the endpoint x = 3 we have
∑∞

n=1
2n

n2 (1
2
)n =

∑∞
n=1

1
n2 , which also converges.

Ergo the interval of convergence of the power series is [1, 2].

Editorial Note: The question roughly corresponding to this one on the actual
midterm is somewhat shorter.

Problem 3.

(a) [5pts.] Let f : R→ R. What does it mean to say that f is differentiable at a?

Solution: We say that f is differentiable at a if the limit

lim
x→a

f(x)− f(a)

x− a

exists, and we call this limit f ′(x).

(b) [5pts.] Let f : R → R and g : R → R be two real-valued functions such that
g(a) 6= 0, and both f and g are differentiable at a. Prove that f

g
is differentiable at

a.

Solution: First, since g is differentiable at a, g must be continuous at a, so
since g(a) 6= 0 there is a small neighborhood around a on which g(x) 6= 0 and
it makes sense to consider f

g
(x). Now observe that

f
g
(x)− f

g
(a)

x− a
=

1

g(x)g(a)

(
f(x)g(a)− g(x)f(a)

x− a

)
=

1

g(x)g(a)

(
f(x)g(a) + f(a)g(a)− g(a)f(a)− g(x)f(a)

x− a

)
=

1

g(x)g(a)

(
f(x)− f(a)

x− a
· g(a)− f(a) · g(x)− g(a)

x− a

)
Because limx→a

f(x)−f(a)
x−a = f ′(a), limx→a

g(x)−g(a)
x−a = g′(a), and limx→a g(x) =

g(a), it follows from the limit laws that the limit of the last expression as x→ a

is f ′(a)g(a)−g′(a)f(a)
g(a)2

. In particular this limit exists and is a real number, so f
g

is
differentiable at a.

Problem 4.
Let (fn) be a sequence of real-valued functions.

(a) [5pts.] What does it mean for (fn) to converge uniformly to f on a domain S ⊂ R?



Solution: We say that fn → f uniformly on S if for every ε > 0, there is a N
such that for any x ∈ S and n > N , we have |fn(x)− f(x)| < ε.

(b) [5pts.] Suppose that (fn) is uniformly continuous on S, and fn → f uniformly on
S. Prove that f is uniformly continuous on S.

Solution: Let ε > 0. There exists N such that for n ≥ N and x ∈ S, |fn(x)−
f(x)| < ε

3
. In particular, for every x ∈ S, |fN(x)− f(x)| < ε

3
. Moreover, there

exists δ such that if x, y ∈ S and |x− y| < δ, we have that |fN(x)− fN(y)| < ε
3
.

Therefore if x, y ∈ S and |x− y| < δ, we have

|f(x)− f(y)| ≤ |fx)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Problem 5.
Let (an) be a sequence of positive numbers such that lim an = 0.

(a) [5pts.] Give an example to show that
∑
an need not converge.

Solution: We know that 1
n
→ 0 but

∑∞
n=0

1
n

=∞.

(b) [5pts.] Prove that there exists a subsequence (ank
) of (an) such that

∑∞
k=1 ank

con-
verges.

Solution: Because lim an = 0, there exists N1 such that for n > N1, an < 1.
Pick some n1 > N1, so that an1 < 1. Now, there is some N2 such that for
n > N2, an <

1
4
. Pick n2 such that n2 > max{n1, N1}, so that an2 <

1
4
. Iterate

this process, choosing nk such that nk > nk−1 and ank
< 1

k2
. Then we see that∑

k=1 ank
converges by comparison to

∑
1
n2 .



This page is for scratch work. Feel free to tear it off. Do not write anything you want
graded on this page unless you indicate very clearly that this is the case on the page of the
corresponding problem.


