
MTH 320, Section 003
Analysis

Sample Final

Instructions: You have two hours to complete the exam. There are eight problems, worth
a total of eighty points. You may not use any books or notes. Partial credit will be given
for progress toward correct proofs.

Write your solutions in the space below the questions. If you need more space use
the back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

Total: 80



Problem 1.

(a) [5pts.] State the Mean Value Theorem.

Solution: Suppose that f is continuous on [a, b] and differentiable on (a, b).
Then there is some x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

(b) [5pts.] Suppose that f(x) is differentiable on R and f ′(x) > 0 on R. Prove that f
is strictly increasing.

Solution: Let x < y. We observe that by MVT, there is some z ∈ (x, y) such
that f ′(z)(y−x) = f(y)−f(x). But since f ′(z) > 0, we see that f(y)−f(x) > 0,
or f(y) > f(x). Ergo f is strictly increasing.

Problem 2.
Let f : R→ R.

(a) [5pts.] What does it mean for f to be differentiable at a?

Solution: We say that f is differentiable at a if the limit

lim
x→a

f(x)− f(a)

x− a

exists and is a real number, and we call this limit f ′(x).

(b) [5pts.] Let f(x) = x sin( 1
x
) when x 6= 0 and f(0) = 0. Is f differentiable at x = 0?

Justify your answer.

Solution: We observe that f(x)−f(0)
x

=
x sin( 1

x
)

x
= sin( 1

x
). The limit limx→0 sin( 1

x
)

does not exist, so f is not differentiable at x = 0.

Problem 3.

(a) [5pts.] Prove that the power series
∑∞

n=1
xn

n
converges on [−1, 1).

Solution: The power series is centered around 0, and an application of the
ratio test shows that the radius of convergence is 1. As for the endpoints, at
x = −1 we have the alternating harmonic series, which converges, and at x = 1
we have the harmonic series, which diverges.



(b) [5pts.] What function does the power series above represent on (−1, 1)? Justify
your answer.

Solution: Recall that power series can be differentiated term by term. Indeed,
the derivative of f(x) is

∑∞
n=1 x

n−1 =
∑∞

n=0 x
n, which converges to 1

1−x on
(−1, 1). Antidifferentiating and noting that f(0) = 0, we see that f(x) =
− ln(1− x) on (−1, 1).

Problem 4.

(a) [5pts.] Define lim inf sn.

Solution: We say lim inf sn = limN→∞ inf{sn : n > N}.

(b) [5pts.] Prove that if lim inf sn = lim sup sn = s then (sn) converges to s.

Solution: Since s = lim sup sn, there exists a positive number N1 such that
|s − sup{sn : n > N1}| < ε. In particular, sup{sn : n > N1} < s + ε, so for
n > N1, sn < s + ε. Similarly, since lim sup sn = s, there exists N2 such that
n > N2 implies that s−ε < sn. Therefore if n ≥ max{N1, N2}, s−ε < sn < s+ε,
so |s− sn| < ε. Ergo sn → s.

Problem 5.

(a) [5pts.] State the Weierstrass M -test.

Solution: Let
∑∞

k=0 gk(x) be a series of functions on a domain S such that
|gk(x)| ≤ Mk on S for some constant Mk, and

∑∞
k=0Mk converges. Then∑∞

k=0 gk(x) converges uniformly.

(b) [5pts.] Prove that the series of functions
∑∞

n=1
1
n3 sin(nx) converges to a continuous

function on all of R, being careful to justify all of your steps.

Solution: Observe that | 1
n3 sin(nx)| ≤ | 1

n3 | = Mn on R, and
∑∞

n=1
1
n3 converges.

Ergo
∑∞

n=1
1
n3 sin(nx) converges uniformly. But each 1

n3 sin(nx) is continuous,
so since the series converges uniformly, the limit function is also continuous.

Problem 6.

(a) [5pts.] State the Bolzano-Weierstrass Theorem.

Solution: Every bounded sequence has a convergent subsequence.



(b) [5pts.] Let S ⊂ R. Suppose that every sequence (sn) in S has a subsequence
converging to an element of S. Prove that S must be closed and bounded. [Hint:
Give two arguments to establish that if S is not closed or not bounded, you can
produce a sequence with no such subsequence.]

Solution: Suppose S is not bounded. If in particular S is not bounded above,
for any n ∈ N, we can choose an xn ∈ S such that xn > n. Then the sequence
(xn) diverges to infinity, as does any subsequence of (xn). Ergo (xn) has no
convergent subsequence. If S is not bounded below, the same argument holds
for a sequence diverging to −∞.

Now suppose that S is not closed. That means there is at least one sequence
(xn) such that xn ∈ S but xn → x /∈ S. Then every subsequence of (xn) also
converges to x, and in particular does not converge to any element of S.

Problem 7.

(a) [5pts.] State L’Hospital’s Rule.

Solution: Let s ∈ {a, a±,±∞}, and let limx→s
f ′(x)
g′(x)

= L. Then if either

limx→s f(x) = 0 = limx→s g(x) or limx→s |g(x)| =∞, the limit limx→s
f(x)
g(x)

exists
and is also L.

(b) [5pts.] Find the following limits.

• limy→∞(1 + 2
y
)y

• limx→0

√
1+x−

√
1−x

x

Solution:

We rewrite the first limit as limy→∞ e
y ln(1+ 2

y
). Furthermore, we observe that

lim
y→∞

y ln

(
1 +

2

y

)
= lim

y→∞

ln(1 + 2
y
)

1
y

= lim
y→∞

−2
y2(1+ 2

y
)

− 1
y2

= lim
y→∞

2

1 + 2
y

= 2

Here the second equality is by L’Hospital’s Rule and relies on the final limit

existing. So we see that the overall limit limy→∞(1 + 2
y
)
1
y = e2.



For the second limit, we multiply by
√
1+x+

√
1−x√

1+x+
√
1−x to obtain

lim
x→0

(1 + x)− (1− x)

x(
√

1 + x+
√

1− x)
= lim

x→0

2

(
√

1 + x+
√

1− x)
= 1.

Problem 8.

(a) [5pts.] Define the expression limx→a+ f(x) = L.

Solution: We say that limx→a+ f(x) = L if there is an interval (a, b) such that
if (xn) is a sequence in (a, b) converging to a, then (f(xn)) converges to L.

(b) [5pts.] Prove that if limx→a+ f(x) = limx→a− f(x) = L, then limx→a f(x) = L.

Solution: We know there is some interval (c, a) such that any sequence (xn) in
(c, a) converging to a has f(xn)→ L, and also some interval (a, b) such that any
sequence (xn) in (a, b) converging to a has f(xn)→ L. Let (tn) be any sequence
in (c, a) ∪ (a, b), and divide tn into two subsequences (tnk

) consisting of those
tn such that tnk

< a and (tm`
) consisting of those tm`

such that tm`
> a. Then

for ε > 0, because the left-hand limit is L, there is some N1 such that nk > N1

implies |f(tnk
)−L| < ε, and because the right-hand limit is L, there is some N2

such that m` > N2 implies |f(tm`
)− L| < ε. So for n > max{N1, N2}, we must

have |f(tn)−L| < ε. Since ε was arbitrary, f(tn)→ L; since (tn) was arbitrary,
limx→a f(x) = L.



This page is for scratch work. Feel free to tear it off. Do not write anything you want
graded on this page unless you indicate very clearly that this is the case on the page of the
corresponding problem.


