
Homework 9 Solutions

MTH 320

1. Problems from Ross.

(19.1) (a) f(x) = x17 sinx − ex cos(3x) is built by sums, products, and compositions
of continuous functions, hence is continuous. Ergo since [0, π] is a closed interval, by
Theorem 19.2 f is uniformly continuous on [0, π].

(c) f(x) = x3 can be extended continuously from (0, 1) to [0, 1] by letting f(0) = 0
and f(1) = 1. Ergo by Theorem 19.5, f is uniformly continuous on (0, 1).

(f) If f(x) = sin( 1
x2

) on (0, 1], consider the Cauchy sequence (sn) where sn = 1√
nπ
2

for

n ≥ 1. Then f(sn) = sin(nπ
2

), so the sequence (f(sn)) is (1, 0,−1, 0, 1, 0, · · · ), which is
not Cauchy. Since uniformly continuous functions map Cauchy sequences to Cauchy
sequences by Theorem 19.4, f is not uniformly continuous on (0, 1].

(g)Let f(x) = x2 sin 1
x

on (0, 1]. We claim that f may be extended to f̃ continuous

on [0, 1] by setting f̃(0) = 0. For if (xn) is any sequence in (0, 1] converging to 0,
then 0 ≤ |f(xn)| = |x2n sin 1

x
| ≤ |x2n|, so since x2n → 0, f̃(xn) → 0 = f̃(0). Hence f̃ is

continuous at 0, and by Theorem 19.5 the existence of a continuous extension to [0, 1]
suffices to show that f is uniformly continuous on (0, 1].

(19.2)(b) Let f(x) = x2 on [0, 3]. Let ε > 0, and set δ = ε
6
. Then for x, y ∈ [0, 3], if

|x− y| < δ, |f(x)− f(y)| = |x2 − y2| = |x− y||x+ y| < ε
6
(6) = ε. Ergo f is uniformly

continuous on [0, 3].

(19.4)(a) Let f be uniformly continuous on a bounded set S. Suppose that f is un-
bounded on S. Then for any N ∈ N, there is an xn ∈ S such that |f(xn)| > N .
Consider the sequence (xn). By the Bolzano-Weierstrass Theorem, some subsequence
(xnk) converges, hence is Cauchy. But by Theorem 19.4, since f is uniformly continu-
ous, f maps Cauchy sequences to Cauchy sequences, so (f(xnk)) is a Cauchy sequence,
hence converges to some real number. However, by construction lim f(xnk) =∞. This
is a contradiction, so f must be bounded on S.

(b) Observe that f(x) = 1
x2

is not bounded on the bounded set (0, 1), so f cannot be
uniformly continuous on (0, 1).



(19.5)(a) f(x) = tan x is continuous on the closed interval S = [0π
4
), hence uniformly

continuous on same.

(b) f(x) = tan x is not bounded on the bounded set S = [0, π
2
), hence not uniformly

continuous on S.

(c) Since limx→0
sinx
x

sinx = (1)(0) = 0, we see that f(x) = 1
x

sin2 x is continuous ex-

tendable to [0, 1] by setting f̃(x) = 0; hence f is uniformly continuous on (0, 1].

(d) f(x) = 1
x−3 is unbounded on the bounded set (0, 3), hence not uniformly continuous

on (0, 3).

(e)f(x) = 1
x−3 is unbounded on the bounded set (3, 4), hence not uniformly continuous

on (3, 4). Therefore it cannot be uniformly continuous on (3,∞).

(f) Consider f(x) = 1
x−3 on (4,∞). Let ε > 0, and let δ = ε. Then if x, y > 4 and

|x− y| < δ = ε, we have

|f(x)− f(y)| = |y − x|
(x− 3)(y − 3)

< |y − x| < δ = ε.

So f(x) is uniformly continuous on (4,∞).

(19.7) (a) Since f is continuous on [0,∞), f is continuous on [0, k + 1], implying that
f is in fact uniformly continuous on [0, k + 1]. Given ε > 0, choose δ1 < 1 such that
for x, y ∈ [0, k + 1], |x − y| < δ1 implies that |f(x) − f(y)| < ε. Furthermore, choose
δ2 < 1 such that for x, y ∈ [k,∞), and |x − y| < δ2 implies that |f(x) − f(y)| < ε.
Then let δ = min{δ1, δ2}, and let |x− y| < δ for some x, y ∈ [0,∞). Because δ < 1, ei-
ther x, y ∈ [0, k+1] or x, y ∈ [k,∞), and |x−y| < δ then implies that |f(x)−f(y)| < ε.

(b) We claim that f(x) =
√
x is uniformly continuous on [0, 1]. For given ε > 0, let

δ = ε. Then if x, y ∈ [1,∞) and |x− y| < δ = ε, we see

|f(x)− f(y)| = |
√
x−√y| = |x− y|√

x+
√
y
≤ |x− y| < ε.

Hence by part (a),
√
x is uniformly continuous on [0,∞).

2. (20.6) Let f(x) = x3|x|. Then when x ≥ 0, f(x) = x2, and when x < 0, f(x) = −x2.
Observe that if (xn) is any sequence of points approaching∞, the terms of the sequence
(f(xn)) = (x2n) also diverge to ∞, so limx→∞ f(x) = ∞. Similarly limx→−∞ f(x) =
−∞. Finally, let (xn) be an arbitrary sequence of real numbers in R {0} such that
xn → 0. Then |f(xn)| = x2n, so by the squeeze theorem, since x2n → 0, f(xn)2 → 0.



Since (xn) was arbitrary, we have proved limx→0 f(x) = 0 (and hence the left- and
right-hand limits are both zero).

3. (20.13) Recall that limx→a f(x) = 3 and limx→a g(x) = 2.

(a) By the limit laws for functions concerning multiplication by a constant and prod-
ucts of functions, limx→a 3f(x) = 9 and limx→a g(x)2 = 4. Ergo limx→a[3f(x)+g(x)2] =
9 + 4 = 13 since both limits in the sum exist.

(b) By the limit law for quotients, limx→a
1

g(x)
= 1

limx→a g(x)
= 1

2
.

(c) Recall that
√
x is a continuous function, so

lim
x→a

√
3f(x) + 8g(x) =

√
lim
x→a

3f(x) + 8g(x)

=
√

3(3) + 8(2)

=
√

25

= 5

where the third step again follows by the limit laws for functions.

4. (20.16) (a) Let (xn) be any sequence of points in (a, b) such that xn → a. Since
limx→a+ f1(x) = L1, by definition f1(xn) → L1, and since limx→a+ f1(x) = L1, by def-
inition f2(xn) → L2. But for all n, f1(xn) ≤ f2(xn), so we must have lim f1(xn) ≤
lim f2(xn). Ergo L1 ≤ L2.

(b) No. Consider f(x) = 0 and f(x) = 1
x

on (0, 1).

5. (20.17) Let (xn) be any sequence of points in (a, b) such that xn → a. Then, since
limx→a+ f1(x) = L = limx→a+ f3(x), by definition the limits of the sequences (f1(xn))
and (f3(xn)) are both L. However, f1(xn) ≤ f2(xn) ≤ f3(xn) for all n, so by the
Squeeze Theorem for sequences, we must have lim f2(xn) = L. Since (xn) was an
arbitrary sequence in (a, b), this implies that limx→a+ f2(x) = L.


