Homework 9 Solutions

MTH 320

1. Problems from Ross.

(19.1) (a) f(x) = 2" sinx — e®cos(3x) is built by sums, products, and compositions
of continuous functions, hence is continuous. Ergo since [0, 7] is a closed interval, by
Theorem 19.2 f is uniformly continuous on [0, 7].

(c) f(z) = 2% can be extended continuously from (0,1) to [0,1] by letting f(0) = 0
and f(1) = 1. Ergo by Theorem 19.5, f is uniformly continuous on (0, 1).
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n > 1. Then f(s,) = sin(%), so the sequence (f(s,)) is (1,0, —1,0,1,0,---), which is

not Cauchy. Since uniformly continuous functions map Cauchy sequences to Cauchy
sequences by Theorem 19.4, f is not uniformly continuous on (0, 1].

(f) If f(z) = sin(Z%) on (0, 1], consider the Cauchy sequence (s,) where s, = for

(g)Let f(x) = 2®sin i on (0,1]. We claim that f may be extended to f continuous
on [0,1] by setting f(0) = 0. For if (z,) is any sequence in (0,1] converging to 0,
then 0 < |f(z,)| = |#Zsin 1| < |22], so since 22 — 0, f(x,) = 0 = f(0). Hence f is
continuous at 0, and by Theorem 19.5 the existence of a continuous extension to [0, 1]
suffices to show that f is uniformly continuous on (0, 1].

(19.2)(b) Let f(x) = 2® on [0,3]. Let € > 0, and set § = £. Then for z,y € [0,3], if
[z —yl <6, |f(x) = fy)| = |2* = y?| = [z — yllz + y| < §(6) = e. Ergo f is uniformly
continuous on [0, 3].

(19.4)(a) Let f be uniformly continuous on a bounded set S. Suppose that f is un-
bounded on S. Then for any N € N, there is an z,, € S such that |f(z,)| > N.
Consider the sequence (z,). By the Bolzano-Weierstrass Theorem, some subsequence
(xn,) converges, hence is Cauchy. But by Theorem 19.4, since f is uniformly continu-
ous, f maps Cauchy sequences to Cauchy sequences, so (f(z,,)) is a Cauchy sequence,
hence converges to some real number. However, by construction lim f(z,,) = co. This
is a contradiction, so f must be bounded on S.

(b) Observe that f(x) = =5 is not bounded on the bounded set (0,1), so f cannot be
uniformly continuous on (0, 1).



(19.5)(a) f(x) = tanz is continuous on the closed interval S = [0%), hence uniformly
continuous on same.

(b) f(x) = tanz is not bounded on the bounded set S = [0, 7), hence not uniformly
continuous on S.

(c)

tendable to [0, 1] by setting f(z) = 0; hence f is uniformly continuous on (0, 1.
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(d) f(z) = =15 is unbounded on the bounded set (0, 3), hence not uniformly continuous
n (0,3).

(e)f(z) = =5 is unbounded on the bounded set (3,4), hence not uniformly continuous
n (3,4). Therefore it cannot be uniformly continuous on (3, c0).

(f) Consider f(z) = 15 on (4,00). Let € > 0, and let § = e. Then if 2,y > 4 and

|z — y| < 0 =€, we have
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So f(z) is uniformly continuous on (4, c0).

(19.7) (a) Since f is continuous on [0, 00), f is continuous on [0, k + 1], implying that
f is in fact uniformly continuous on [0,k + 1]. Given € > 0, choose d; < 1 such that
for z,y € [0,k + 1], |x — y| < &; implies that |f(z) — f(y)| < e. Furthermore, choose
d2 < 1 such that for z,y € [k,00), and |z — y| < 0 implies that |f(z) — f(y)| < e.
Then let § = min{dy,d2}, and let |z —y| < 0 for some z,y € [0,00). Because 6 < 1, ei-
ther z,y € [0,k+1] or z,y € [k,00), and |x —y| < J then implies that |f(z)— f(y)| < e.

(b) We claim that f(z) = y/z is uniformly continuous on [0,1]. For given e > 0, let
d=¢. Thenif z,y € [1,00) and |z — y| < J = €, we see

s [z —yl . .
1f(x) = fy) = Ve =yl = vr+¢__| yl <

Hence by part (a), v/ is uniformly continuous on [0, c0).

. (20.6) Let f(z) = 2®|z|. Then when z > 0, f(z) = 22, and when z < 0, f(z) = —z?%
Observe that if (z,,) is any sequence of points approaching oo, the terms of the sequence
(f(x,)) = (22) also diverge to 0o, so lim, o f(z) = oco. Similarly lim, , ., f(z) =
—o00. Finally, let (z,) be an arbitrary sequence of real numbers in R {0} such that
z, — 0. Then |f(z,)| = 22, so by the squeeze theorem, since z2 — 0, f(z,)* — 0.
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Since (z,) was arbitrary, we have proved lim, o f(z) = 0 (and hence the left- and
right-hand limits are both zero).

. (20.13) Recall that lim,_,, f(z) = 3 and lim,_,, g(x) = 2.

(a) By the limit laws for functions concerning multiplication by a constant and prod-
ucts of functions, lim, ., 3f(z) = 9 and lim,_,, g(z)* = 4. Ergo lim,_,,[3f(z)+g(z)*] =
9 + 4 = 13 since both limits in the sum exist.

. . . . 1 _ 1 _ 1
(b) By the limit law for quotients, lim,_, 7@ = Tmae@ 3

(c) Recall that /z is a continuous function, so

lim /3 () + 8g(x) = | /lim 3f(x) + 8g(x)
=/3(3) +8(2)

— /25
=5

where the third step again follows by the limit laws for functions.

. (20.16) (a) Let (x,) be any sequence of points in (a,b) such that x, — a. Since
lim,_,q+ f1(x) = Ly, by definition fi(x,) — L1, and since lim,_,,+ fi(x) = Ly, by def-
inition fo(z,) — Lo. But for all n, fi(z,) < fo(x,), so we must have lim fi(z,) <
lim fo(z,). Ergo Ly < La.

(b) No. Consider f(z) =0 and f(z) =2 on (0,1).

. (20.17) Let (x,) be any sequence of points in (a,b) such that z,, — a. Then, since
lim, o+ fi(z) = L = lim,_,,+ f3(z), by definition the limits of the sequences (fi(z,))
and (f3(x,)) are both L. However, fi(z,) < fao(x,) < f3(x,) for all n, so by the
Squeeze Theorem for sequences, we must have lim fy(x,) = L. Since (z,) was an
arbitrary sequence in (a, b), this implies that lim, ,,+ fo(x) = L.



