
Homework 8 Solutions

MTH 320

1. Problems from Ross.

(17.2)(a) The functions are as follows, and all have domain R.

f + g(x) =

{
x2 when x < 0

x2 + 4 when x ≥ 0

fg(x) =

{
0 when x < 0

4x2 when x ≥ 0

f ◦ g(x) = 4

g ◦ f(x) =

{
0 when x < 0

16 when x ≥ 0

(b) The functions g, fg, and f ◦ g are continuous, and f , f + g, and g ◦ f are not.
Sample proof: We claim f fails to be continuous at 0. If (xn) is a sequence of points
such that xn < 0 for all n and xn → 0, then lim f(xn) = lim 0 = 0 6= 4 = f(0).

(17.3) (a) By assumption, cos(x) is continuous, so since products of continuous func-
tions are continuous, cos4 x is continuous. Moreover, constant funtions are continuous,
and sums of continuous functions are continuous, so 1 + cos4 x is continuous. Finally,
log x is continuous on its domain, all positive numbers, so given that 1 + cos4 x > 1
and compositions of continuous functions are continuous, log(1 + cos4 x) is continuous
on R. (b) Because 2x and x2 are continuous functions and compositions of continuous
functions are continuous, 2x

2
is also continuous.

(17.10) In each case, it suffices to find a sequence sn → x0 such that lim f(sn) 6= f(x0).

(a) Let f(x) = 1 for x > 0 and f(x) = 0 for x ≤ 0. Consider the sequence (sn) where
sn = 1

n
. Then lim sn = 0, but lim f(sn) = lim f( 1

n
) = 1 6= 0. So f is not continuous at 0.

(b) Let g(x) = sin( 1
x
) for x 6= 0 and g(0) = 0. Consider the sequence (sn) where

sn = 1
(2n+ 1

2
)π

. Then lim sn = 0, but lim f(sn) = lim sin((2n+ 1
2
)π) = lim 1 = 1 6= f(0).

Ergo f is not continuous at 0.

(c)Let sgn(x) = −1 for x < 0, sgn(x) = 1forx > 0, and sgn(0) = 0. Again consider
the sequence (sn) such that sn = 1

n
. Then lim sn = 0, but lim f(sn) = lim 1 = 1. So f



is not continuous at 0.

(17.12) (a) Suppose f is a continuous real-valued function on (a, b) such that f(r) = 0
for all r rational in (a, b). Let x ∈ (a, b). For each n ∈ N, choose a rational number
rn in the interval (x − 1

n
, x) ∩ (a, b). (We know this is possible because every interval

contains a rational number.) Then |x−rn| < 1
n
, so lim rn = x. Therefore by continuity,

f(x) = lim f(rn) = lim 0 = 0.

(b) Consider the function f − g(x) on (a, b), which is continuous on (a, b) since both f
and g are continuous on a, b). Since f(r) = g(r) on all rational r ∈ (a, b), f − g(r) = 0
on all rational r ∈ (a, b). Ergo by part (a), f−g(x) = 0 for all x ∈ (a, b), so f(x) = g(x)
for all x ∈ (a, b).

Ergo continuous functions on intervals are determined by their values on the rational
numbers!

(18.4)Let S ⊂ R. Suppose there exists a sequence (xn) in S such that xn → x0 /∈ S.
Let f(x) = 1

x−x0 . Then f is well-defined on S since x0 /∈ S, and is continuous since
it is a quotient of continuous functions such that the denominator is nonzero. Now
for any M > 0, choose N such that n > N implies |xn − x0| < 1

M
. Then for n > N ,

|f(xn)| = 1
|xn−x0| > M . Since M was arbitrary, f is unbounded on S.

So any set which is not closed (i.e. does not contain all its limit points) is the domain
of some unbounded continuous function.

(18.7) Let f(x) = xex. Since products of continuous functions are continuous, f is
continuous on R. Observe that f(0) = 0 and f(1) = e ≈ 2.718. Since f(0) < 2 < f(1),
by the Intermediate Value Theorem, there is some x in (0, 1) such that f(x) = 2.

(18.10) Let f be a continuous function on [0, 2] such that f(0) = f(2). Consider the
function g(x) = f(x+ 1)−f(x) on [0, 1]. Observe that f(x+ 1) is a composition of the
continuous functions f(x) and x+1, hence continuous, so g is a difference of continuous
functions and therefore continuous. Moreover, g(0) = f(1) − f(0) = f(1) − f(2) =
−[f(2)−f(1)] = −g(1). Since g(0) = −g(1), either g(0) ≤ 0 ≤ g(1) or g(0) ≥ 0 ≥ g(1);
in either case, by the Intermediate Value Theorem, there exists x ∈ [0, 1] such that
g(x) = 0. This implies that 0 = f(x+ 1)− f(x), or equivalently f(x+ 1) = f(x). Let
y = x+ 1, then x, y have the property that |y − x| = 1 and f(x) = f(y).

Ergo if you start a car, drive for two hours, and then stop, at some point during the
second hour you will be driving exactly the speed you were driving an hour ago.



2. We observe that (s+n ) is monotone increasing, so either s+n → ∞ or s+n → c for some
c ∈ R>0. Suppose that s+n → c. Let (sn) be the sequence of partial sums of

∑
an = A,

so that sn → A. Then s−n = sn − s+n → A − c ∈ R by the limit laws. So (s−n ) also
converges to a real number b = A− c.
Now consider the series

∑
|an|. Let (tn) be the sequence of partial sums of this series.

Then tn = s+n − s−n → c − b by the limit laws. This implies that
∑
|an| converges,

so
∑
an converges absolutely. This is a contradiction! So in fact s+n → ∞. Similarly

s−n →∞.

3. The stars over Babylon function.

• Let x0 = p
q

be rational, such that f(x0) = 1
q
. Then for every n ∈ N, choose an

irrational xn ∈ (x0 − 1
n
, x0) ∩ (0, 1]. The sequence (xn) has the property that

|x0−xn| < 1
n

for all n ∈ N, so xn → x0. However, since xn is irrational, f(xn) = 0
for all n, so lim f(xn) = 0 6= 1

q
= f(x0). So f is discontinuous at x0.

• Let x0 be irrational, so that f(x0) = 0. Observe that the set of values our function
f takes is {0}∪{ 1

n
: n ∈ N}. Notice that for every n ∈ N , if r ∈ (0, 1] has f(r) = 1

n
,

it must be the case that r can be written as i
n

for some i. Therefore, if we let

δN = min{|x0 −
i

n
| : 0 ≤ i ≤ n ≤ N, i, n ∈ N},

we see that for any n ≤ N , (x0 − δN , x0 + δN) contains no r such that f(r) = 1
n
.

Ergo |x− x0| < δN implies that |f(x)− f(x0)| < 1
N

. Hence f is continuous at x0.


