MTH 320: Homework 8

Due: October 27, 2017

- 1. Note that Quiz 2 will take place on Monday October 30, during the first twenty minutes of class. Material that is fair game is Sections 14-15, 17-18, plus rearrangements of series. (Section 18 will conclude sometime during lecture on Monday October 23.)
- 2. Read Sections 19-20 in Ross.
- 3. Do problems 17.2, 17.3 (a),(c), 17.10, 17.12, 18.4, 18.7, 18.10 in Ross.
- 4. Prove the following lemma mentioned in class: Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent series, and set

$$a_{n}^{+} = \begin{cases} a_{n} & a_{n} \ge 0\\ 0 & a_{n} < 0 \end{cases}$$
$$a_{n}^{-} = \begin{cases} a_{n} & a_{n} \le 0\\ 0 & a_{n} > 0. \end{cases}$$

Let (s_n^+) , (s_n^-) be the sequences of partial sums of $\sum a_n^+$ and $\sum a_n^-$. Then $s_n^+ \to \infty$ and $s_n^- \to -\infty$.

5. The stars over Babylon. For each rational number $r \in (0, 1]$, write $r = \frac{p}{q}$ where $p, q \in \mathbb{N}$ are natural numbers with no common factors. Then consider the following function on [0, 1]:

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \text{ is rational} \\ 0 & x \text{ is irrational.} \end{cases}$$

We claim that f is discontinuous at every rational number in (0, 1] and continuous at every rational.

- Discontinuity at each rational. Let $x_0 \in (0, 1]$ such that x_0 is rational. For $n \in \mathbb{N}$, pick x_n an irrational in $(x_0 \frac{1}{n}, x_0) \cap (0, 1]$. Use this sequence to show f is discontinuous at x_0 .
- Continuity at each irrational. Let $x_0 \in (0, 1]$ such that x_0 is irrational. Let N be a natural number. Let

$$\delta_N = \min\{|x_0 - \frac{i}{n}| : 0 \le i \le n \le N, \ i, n \in \mathbb{N}\}.$$

Observe that because $x_0 \neq \frac{i}{n}$ for any $\frac{i}{n}$, $\delta_N > 0$. Prove that for $x \in (0, 1]$, if $|x - x_0| < \delta_N$, then $|f(x) - f(x_0)| < \frac{1}{N}$. Conclude that f is continuous at x_0 .

This example helps demonstrate that our intuition for what continuity should "look like" on a graph is in general insufficiently subtle.