MTH 320: Homework 8

Due: October 27, 2017

1. Note that Quiz 2 will take place on Monday October 30, during the first twenty minutes of class. Material that is fair game is Sections 14-15, 17-18, plus rearrangements of series. (Section 18 will conclude sometime during lecture on Monday October 23.)
2. Read Sections 19-20 in Ross.
3. Do problems $17.2,17.3$ (a),(c), 17.10, 17.12, 18.4, 18.7, 18.10 in Ross.
4. Prove the following lemma mentioned in class: Let $\sum_{n=1}^{\infty} a_{n}$ be a conditionally convergent series, and set

$$
\begin{aligned}
& a_{n}^{+}= \begin{cases}a_{n} & a_{n} \geq 0 \\
0 & a_{n}<0\end{cases} \\
& a_{n}^{-}= \begin{cases}a_{n} & a_{n} \leq 0 \\
0 & a_{n}>0\end{cases}
\end{aligned}
$$

Let $\left(s_{n}^{+}\right),\left(s_{n}^{-}\right)$be the sequences of partial sums of $\sum a_{n}^{+}$and $\sum a_{n}^{-}$. Then $s_{n}^{+} \rightarrow \infty$ and $s_{n}^{-} \rightarrow-\infty$.
5. The stars over Babylon. For each rational number $r \in(0,1]$, write $r=\frac{p}{q}$ where $p, q \in \mathbb{N}$ are natural numbers with no common factors. Then consider the following function on $[0,1]$:

$$
f(x)= \begin{cases}\frac{1}{q} & x=\frac{p}{q} \text { is rational } \\ 0 & x \text { is irrational }\end{cases}
$$

We claim that f is discontinuous at every rational number in $(0,1]$ and continuous at every rational.

- Discontinuity at each rational. Let $x_{0} \in(0,1]$ such that x_{0} is rational. For $n \in \mathbb{N}$, pick x_{n} an irrational in $\left(x_{0}-\frac{1}{n}, x_{0}\right) \cap(0,1]$. Use this sequence to show f is discontinuous at x_{0}.
- Continuity at each irrational. Let $x_{0} \in(0,1]$ such that x_{0} is irrational. Let N be a natural number. Let

$$
\delta_{N}=\min \left\{\left|x_{0}-\frac{i}{n}\right|: 0 \leq i \leq n \leq N, i, n \in \mathbb{N}\right\}
$$

Observe that because $x_{0} \neq \frac{i}{n}$ for any $\frac{i}{n}, \delta_{N}>0$. Prove that for $x \in(0,1]$, if $\left|x-x_{0}\right|<\delta_{N}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{N}$. Conclude that f is continuous at x_{0}.

This example helps demonstrate that our intuition for what continuity should "look like" on a graph is in general insufficiently subtle.

