Homework 7 Solutions

MTH 320

1. Problems from Section 14.
(14.2) (d) We note that if $a_{n}=\frac{n^{3}}{3^{n}}$, then $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{(n+1)^{3}}{3 n^{3}}=\frac{1}{3}$. So by the Ratio Test this series converges.
(14.2) (e) We note that if $a_{n}=\frac{n^{2}}{n!}$, then $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{(n+1)}{n^{2}}=0$. So by the Ratio Test this series converges.
(14.2)(f) $\sum \frac{1}{n^{n}}$. We use the Root Test, observing that $\lim \sup \left|\frac{1}{n^{n}}\right|^{\frac{1}{n}}=\lim \sup \frac{1}{n}=0$. Ergo this series converges.
(14.6) (a) Suppose that $\sum\left|a_{n}\right|$ converges and $\left(b_{n}\right)$ is bounded. Pick M such that $\left|b_{n}\right|<M$ for all n. Then $\sum M\left|a_{n}\right|$ converges, and $\left|a_{n} b_{n}\right|<M\left|a_{n}\right|$ for all n, so $\sum a_{n} b_{n}$ converges by the Comparison Test.
(b) Corollary 14.7 follows via setting $b_{n}=1$ for all n.
(14.12) Let $\left(a_{n}\right)$ be a sequence with $\liminf \left|a_{n}\right|=0$. We will use induction to construct a subsequence $\left(a_{n_{k}}\right)$ such that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges by comparison with $\sum \frac{1}{k^{2}}$. Since $\liminf \left|a_{n}\right|=0$, there is some N_{1} such that $n \geq N_{1}$ implies $\left|a_{n}\right|<1=\frac{1}{1^{2}}$. Let $a_{n_{1}}=a_{N_{1}+1}$. Now, in general suppose that we have chosen $n_{1}<n_{2}<\cdots<n_{k-1}$ such that $\left|a_{n_{\ell}}\right|<\frac{1}{\ell^{2}}$ for all $1 \leq \ell \leq k-1$. There is some N_{k} such that $n>N_{k}$ implies $\left|a_{n}\right| \leq \frac{1}{k^{2}}$. Let $n_{k}=\max \left\{N_{k}, n_{k-1}\right\}+1$. Then $n_{k} \geq n_{k-1}$ and $\left|a_{n_{k}}\right|<\frac{1}{k^{2}}$. This gives us a sequence $\left(a_{n_{k}}\right)$ such that $\left|a_{n_{k}}\right|<\frac{1}{k^{2}}$ for all $k \geq 1$, so $\sum_{k=1}^{\infty} a_{n_{k}}$ converges by the Comparison Test.
2. Problems from Section 15.
(15.1) (a) As in class, we see that $\frac{1}{n}$ is decreasing to zero, so the alternating series converges.
(b) Let $a_{n}=\frac{(-1)^{n} n!}{2^{n}}$. Then $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{2}$, so $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, and the series $\sum a_{n}$ diverges by the Ratio Test.
(15.4) (b) Let $a_{n}=\frac{\log n}{n}$. Then if $f(x)=\frac{\log x}{x}, a_{n}=f(n)$. We see that f is positive, and since $f^{\prime}(x)=\frac{1}{x^{2}}-\frac{\log x}{x^{2}}<0$ for $x>e, \mathrm{f}$ is eventually decreasing. We may apply
the Integral Test:

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{\log n}{n} & \geq \lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\log x}{x} d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{(\log x)^{2}}{2}\right]_{2}^{t} \\
& =\lim _{t \rightarrow \infty}\left(\frac{(\log t)^{2}}{2}-\frac{(\log 2)^{2}}{2}\right) \\
& =\infty
\end{aligned}
$$

We conclude that the series $\sum_{n=2}^{\infty} \frac{\log n}{n}$ diverges.
(d) Let $a_{n}=\frac{\log n}{n^{2}}$ Then if $f(x)=\frac{\log x}{x^{2}}, a_{n}=f(n)$. We see f is positive, and $f^{\prime}(x)=$ $\frac{1}{x^{3}}-\frac{2 \log x}{x^{3}}<0$ for $x \geq 2, f$ is eventually decreasing. We may apply the Integral Test:

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{\log n}{n^{2}} & \geq \lim _{n} \int_{2}^{n} \frac{\log x}{x^{2}} d x \\
& =\lim _{t \rightarrow \infty}\left[-\frac{\log x-1}{x}\right]_{2}^{t} \\
& =\lim _{t \rightarrow \infty}\left(\frac{1-\log t}{t}+\frac{\log 2-1}{2}\right) \\
& =\frac{\log 2-1}{2}
\end{aligned}
$$

We conclude that the series $\sum \frac{\log n}{n^{2}}$ converges.
3. The number e.

- (a) Let $b_{n}=\frac{1}{n!}$. Then $\left|\frac{b_{n}+1}{b_{n}}\right|=\left|\frac{1}{n+1}\right|$, so $\limsup \left|\frac{b_{n}+1}{b_{n}}\right|=0$. Ergo $\sum_{n=0}^{\infty} b_{n}=$ $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges.
- (b) We compute that

$$
\begin{aligned}
a_{n} & =\left(1+\frac{1}{n}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\frac{1}{n}\right)^{k} \\
& =\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k} \frac{1}{k!} \\
& =\frac{1}{0!}+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
\end{aligned}
$$

Observe that for $n \geq 1, \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \leq 1$, so $a_{n} \leq \frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}=s_{n}$. Therefore $\limsup a_{n} \leq \lim \sup s_{n}=\lim s_{n}=s$.

- (c) Notice that

$$
\begin{aligned}
a_{n} & =\frac{1}{0!}+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& =\frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}+\sum_{k=m+1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& \leq \frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
\end{aligned}
$$

Letting $n \rightarrow \infty$ as indicated, we see $\lim \inf a_{n} \geq \lim \frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}=$ $\sum_{k=0}^{m} \frac{1}{m!}$. But m was arbitary, so in fact $\liminf a_{n} \geq \lim \sum_{k=0}^{m} \frac{1}{m!}=s$.

- (d) Since $\lim \sup a_{n}=\lim \inf a_{n}=s, \lim a_{n}=s$. SO both these possible definitions of e are the same.

This outline is based on the proof given in Rudin's book Principles of Mathematical Analysis.

