
Homework 7 Solutions

MTH 320

1. Problems from Section 14.

(14.2) (d) We note that if an = n3

3n
, then lim |an+1

an
| = lim (n+1)3

3n3 = 1
3
. So by the Ratio

Test this series converges.

(14.2) (e) We note that if an = n2

n!
, then lim |an+1

an
| = lim (n+1)

n2 = 0. So by the Ratio
Test this series converges.

(14.2)(f)
∑

1
nn . We use the Root Test, observing that lim sup | 1

nn |
1
n = lim sup 1

n
= 0.

Ergo this series converges.

(14.6) (a) Suppose that
∑
|an| converges and (bn) is bounded. Pick M such that

|bn| < M for all n. Then
∑

M |an| converges, and |anbn| < M |an| for all n, so
∑

anbn
converges by the Comparison Test.

(b) Corollary 14.7 follows via setting bn = 1 for all n.

(14.12) Let (an) be a sequence with lim inf |an| = 0. We will use induction to con-
struct a subsequence (ank

) such that
∑∞

k=1 ank
converges by comparison with

∑
1
k2

.
Since lim inf |an| = 0, there is some N1 such that n ≥ N1 implies |an| < 1 = 1

12
. Let

an1 = aN1+1. Now, in general suppose that we have chosen n1 < n2 < · · · < nk−1 such
that |an`

| < 1
`2

for all 1 ≤ ` ≤ k − 1. There is some Nk such that n > Nk implies
|an| ≤ 1

k2
. Let nk = max{Nk, nk−1} + 1. Then nk ≥ nk−1 and |ank

| < 1
k2

. This gives
us a sequence (ank

) such that |ank
| < 1

k2
for all k ≥ 1, so

∑∞
k=1 ank

converges by the
Comparison Test.

2. Problems from Section 15.

(15.1) (a) As in class, we see that 1
n

is decreasing to zero, so the alternating series
converges.

(b) Let an = (−1)nn!
2n

. Then |an+1

an
| = n+1

2
, so lim inf |an+1

an
| = ∞, and the series

∑
an

diverges by the Ratio Test.

(15.4) (b) Let an = logn
n

. Then if f(x) = log x
x

, an = f(n). We see that f is positive,

and since f ′(x) = 1
x2 − log x

x2 < 0 for x > e, f is eventually decreasing. We may apply



the Integral Test:

∞∑
n=2

log n

n
≥ lim

t→∞

∫ t

2

log x

x
dx

= lim
t→∞

[
(log x)2

2

]t
2

= lim
t→∞

(
(log t)2

2
− (log 2)2

2

)
=∞

We conclude that the series
∑∞

n=2
logn
n

diverges.

(d) Let an = logn
n2 Then if f(x) = log x

x2 , an = f(n). We see f is positive, and f ′(x) =
1
x3 − 2 log x

x3 < 0 for x ≥ 2, f is eventually decreasing. We may apply the Integral Test:

∞∑
n=2

log n

n2
≥ lim

n

∫ n

2

log x

x2
dx

= lim
t→∞

[
− log x− 1

x

]t
2

= lim
t→∞

(
1− log t

t
+

log 2− 1

2

)
=

log 2− 1

2

We conclude that the series
∑ logn

n2 converges.

3. The number e.

• (a) Let bn = 1
n!

. Then | bn+1
bn
| = | 1

n+1
|, so lim sup | bn+1

bn
| = 0. Ergo

∑∞
n=0 bn =∑∞

n=0
1
n!

converges.

• (b) We compute that

an = (1 +
1

n
)n

=
n∑

k=0

n!

k!(n− k)!

(
1

n

)k

=
n∑

k=0

n!

(n− k)!

(
1

n

)k
1

k!

=
1

0!
+

n∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!



Observe that for n ≥ 1, n(n−1)···(n−k+1)
nk ≤ 1, so an ≤ 1

0!
+ 1

1!
+ · · · + 1

n!
= sn.

Therefore lim sup an ≤ lim sup sn = lim sn = s.

• (c) Notice that

an =
1

0!
+

n∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!

=
1

0!
+

m∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!
+

n∑
k=m+1

n(n− 1) · · · (n− k + 1)

nk

1

k!

≤ 1

0!
+

m∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!

Letting n→∞ as indicated, we see lim inf an ≥ lim 1
0!

+
∑m

k=1
n(n−1)···(n−k+1)

nk
1
k!

=∑m
k=0

1
m!

. But m was arbitary, so in fact lim inf an ≥ lim
∑m

k=0
1
m!

= s.

• (d) Since lim sup an = lim inf an = s, lim an = s. SO both these possible defini-
tions of e are the same.

This outline is based on the proof given in Rudin’s book Principles of Mathematical
Analysis.


