Homework 7 Solutions

MTH 320

- 1. Problems from Section 14.
 - (14.2) (d) We note that if $a_n = \frac{n^3}{3^n}$, then $\lim \left|\frac{a_{n+1}}{a_n}\right| = \lim \frac{(n+1)^3}{3n^3} = \frac{1}{3}$. So by the Ratio Test this series converges.
 - (14.2) (e) We note that if $a_n = \frac{n^2}{n!}$, then $\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{(n+1)}{n^2} = 0$. So by the Ratio Test this series converges.
 - $(14.2)(f)\sum \frac{1}{n^n}$. We use the Root Test, observing that $\limsup |\frac{1}{n^n}|^{\frac{1}{n}} = \limsup \frac{1}{n} = 0$. Ergo this series converges.
 - (14.6) (a) Suppose that $\sum |a_n|$ converges and (b_n) is bounded. Pick M such that $|b_n| < M$ for all n. Then $\sum M|a_n|$ converges, and $|a_nb_n| < M|a_n|$ for all n, so $\sum a_nb_n$ converges by the Comparison Test.
 - (b) Corollary 14.7 follows via setting $b_n = 1$ for all n.
 - (14.12) Let (a_n) be a sequence with $\liminf |a_n| = 0$. We will use induction to construct a subsequence (a_{n_k}) such that $\sum_{k=1}^{\infty} a_{n_k}$ converges by comparison with $\sum \frac{1}{k^2}$. Since $\liminf |a_n| = 0$, there is some N_1 such that $n \geq N_1$ implies $|a_n| < 1 = \frac{1}{1^2}$. Let $a_{n_1} = a_{N_1+1}$. Now, in general suppose that we have chosen $n_1 < n_2 < \cdots < n_{k-1}$ such that $|a_{n_\ell}| < \frac{1}{\ell^2}$ for all $1 \leq \ell \leq k-1$. There is some N_k such that $n > N_k$ implies $|a_n| \leq \frac{1}{k^2}$. Let $n_k = \max\{N_k, n_{k-1}\} + 1$. Then $n_k \geq n_{k-1}$ and $|a_{n_k}| < \frac{1}{k^2}$. This gives us a sequence (a_{n_k}) such that $|a_{n_k}| < \frac{1}{k^2}$ for all $k \geq 1$, so $\sum_{k=1}^{\infty} a_{n_k}$ converges by the Comparison Test.
- 2. Problems from Section 15.
 - (15.1) (a) As in class, we see that $\frac{1}{n}$ is decreasing to zero, so the alternating series converges.
 - (b) Let $a_n = \frac{(-1)^n n!}{2^n}$. Then $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{2}$, so $\liminf \left|\frac{a_{n+1}}{a_n}\right| = \infty$, and the series $\sum a_n$ diverges by the Ratio Test.
 - (15.4) (b) Let $a_n = \frac{\log n}{n}$. Then if $f(x) = \frac{\log x}{x}$, $a_n = f(n)$. We see that f is positive, and since $f'(x) = \frac{1}{x^2} \frac{\log x}{x^2} < 0$ for x > e, f is eventually decreasing. We may apply

the Integral Test:

$$\sum_{n=2}^{\infty} \frac{\log n}{n} \ge \lim_{t \to \infty} \int_{2}^{t} \frac{\log x}{x} dx$$

$$= \lim_{t \to \infty} \left[\frac{(\log x)^{2}}{2} \right]_{2}^{t}$$

$$= \lim_{t \to \infty} \left(\frac{(\log t)^{2}}{2} - \frac{(\log 2)^{2}}{2} \right)$$

$$= \infty$$

We conclude that the series $\sum_{n=2}^{\infty} \frac{\log n}{n}$ diverges.

(d) Let $a_n = \frac{\log n}{n^2}$ Then if $f(x) = \frac{\log x}{x^2}$, $a_n = f(n)$. We see f is positive, and $f'(x) = \frac{1}{x^3} - \frac{2\log x}{x^3} < 0$ for $x \ge 2$, f is eventually decreasing. We may apply the Integral Test:

$$\sum_{n=2}^{\infty} \frac{\log n}{n^2} \ge \lim_{n} \int_{2}^{n} \frac{\log x}{x^2} dx$$

$$= \lim_{t \to \infty} \left[-\frac{\log x - 1}{x} \right]_{2}^{t}$$

$$= \lim_{t \to \infty} \left(\frac{1 - \log t}{t} + \frac{\log 2 - 1}{2} \right)$$

$$= \frac{\log 2 - 1}{2}$$

We conclude that the series $\sum \frac{\log n}{n^2}$ converges.

- 3. The number e.
 - (a) Let $b_n = \frac{1}{n!}$. Then $\left|\frac{b_n+1}{b_n}\right| = \left|\frac{1}{n+1}\right|$, so $\limsup \left|\frac{b_n+1}{b_n}\right| = 0$. Ergo $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} \frac{1}{n!}$ converges.
 - (b) We compute that

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{1}{n}\right)^{k}$$

$$= \sum_{k=0}^{n} \frac{n!}{(n-k)!} \left(\frac{1}{n}\right)^{k} \frac{1}{k!}$$

$$= \frac{1}{0!} + \sum_{k=1}^{n} \frac{n(n-1)\cdots(n-k+1)}{n^{k}} \frac{1}{k!}$$

Observe that for $n \geq 1$, $\frac{n(n-1)\cdots(n-k+1)}{n^k} \leq 1$, so $a_n \leq \frac{1}{0!} + \frac{1}{1!} + \cdots + \frac{1}{n!} = s_n$. Therefore $\limsup a_n \leq \limsup s_n = \lim s_n = s$.

• (c) Notice that

$$a_n = \frac{1}{0!} + \sum_{k=1}^n \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{k!}$$

$$= \frac{1}{0!} + \sum_{k=1}^m \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{k!} + \sum_{k=m+1}^n \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{k!}$$

$$\leq \frac{1}{0!} + \sum_{k=1}^m \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{k!}$$

Letting $n \to \infty$ as indicated, we see $\liminf a_n \ge \lim \frac{1}{0!} + \sum_{k=1}^m \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{k!} = \sum_{k=0}^m \frac{1}{m!}$. But m was arbitary, so in fact $\liminf a_n \ge \lim \sum_{k=0}^m \frac{1}{m!} = s$.

• (d) Since $\limsup a_n = \liminf a_n = s$, $\lim a_n = s$. SO both these possible definitions of e are the same.

This outline is based on the proof given in Rudin's book *Principles of Mathematical Analysis*.