Homework 6 Solutions

MTH 320

1. Problems from Section 14.

(14.2) (a) $\sum \frac{(n-1)}{n^2}$. Observe that $\frac{(n-1)}{n^2} = \frac{1}{n}(1-\frac{1}{n}) \ge \frac{1}{2n}$ for $n \ge 2$. Ergo this series diverges by the Comparison Test.

 $(14.3)(b) \sum \frac{2+\cos n}{3^n}$. Observe that $0 < \frac{2+\cos n}{3^n} \le \frac{3}{3^n} = \frac{1}{3^{n-1}}$, which is geometric. Therefore this series converges by the Comparison Test.

 $(14.3)(e)\sum \frac{n\pi}{9}$. Observe that the sequence $a_n = \frac{n\pi}{9}$ has a subsequence $(a_3, a_{21}, a_{39}, \cdots) = (\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \cdots)$ consisting of all terms of the form a_{18m+3} which is constant at $\frac{\sqrt{3}}{2}$. Ergo $\lim a_n \neq 0$, so the series must diverge.

 $(14.4)(c) \sum \frac{1}{2^n+n}$. Observe that $0 < \sum \frac{1}{2^n+n} < \frac{1}{2^n}$, which is geometric. Therefore this series converges by the Comparison Test.

2. (14.5)Let $\sum a_n = A$ and $\sum b_n = B$. Without loss of generality both series start at n = 1. Let $s_n = a_1 + \cdots + a_n$ be the partial sums of (a_n) and $t_n = t_1 + \cdots + t_n$ be the partial sums of (b_n) . Then $\lim s_n = A$, $\lim t_n = B$.

(a) The partial sums of $(a_n + b_n)$ are $s_n + t_n$. Therefore $\sum (a_n + b_n) = \lim (s_n + t_n) = \lim s_n + \lim t_n = A + B$ because both (s_n) and (t_n) converge.

- (b)The partial sums of $(ka_n \text{ are } ks_n)$. Therefore $\sum ka_n = \lim k(s_n) = k \lim s_n = kA$.
- (c) No. For consider the sequences

$$(a_n) = \left(\frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \cdots\right)$$
$$(b_n) = \left(0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, \cdots\right).$$

By our study of geometric series in class, $\sum a_n = 1 = \sum b_n$. So AB = 1. However, $(a_n b_n) = (0, 0, 0, 0, 0, \cdots)$ and therefore $\sum a_n b_n = 0$.

(14.8) Let $\sum a_n$ and $\sum b_n$ be convergent series of nonnegative numbers. Then consider the square $(\sqrt{a_n} - \sqrt{b_n})^2 = a_n - 2\sqrt{a_nb_n} + b_n^2$. Because squares are nonnegative, we see that $a_n - 2\sqrt{a_nb_n} + b_n^2 \ge 0$, implying that $a_n + b_n \ge 2\sqrt{a_nb_n} \ge \sqrt{a_nb_n} = |\sqrt{a_nb_n}|$. Now by Exercise 14.5 from last week, $\sum (a_n + b_n)$ converges, so by the Comparison Test, $\sum \sqrt{a_n b_n}$ also converges.

 $n_k = \max\{N_k, n_{k-1}\} + 1$. Then $n_k \ge n_{k-1}$ and $|a_{n_k}| < \frac{1}{k^2}$. This gives us a sequence (a_{n_k}) such that $|a_{n_k}| < \frac{1}{k^2}$ for all $k \ge 1$, so $\sum_{k=1}^{\infty} a_{n_k}$ converges by the Comparison Test.

(14.13) (a) Recall that $\sum_{n=0}^{\infty} r^k = \frac{1}{1-r}$ whenever |r| < 1. Therefore

$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n - 1$$
$$= \frac{1}{1 - \frac{2}{3}} - 1$$
$$= 3 - 1$$
$$= 2.$$
$$\sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \left(-\frac{2}{3}\right)^n - 1$$
$$= \frac{1}{1 + \frac{2}{3}} - 1$$
$$= \frac{1}{2}.$$

(b) Using the hint, we see that partial sums s_n of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ are

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)}$$

= $\sum_{k=1}^n \left[\frac{1}{k} - \frac{1}{k+1} \right]$
= $\left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]$
= $\left[1 - \frac{1}{n+1} \right]$

So $\lim s_n = 1$, and the series sums to 1.

(c) Extremely similar to (b).

(d) Observe that when n = 1, $\frac{n-1}{2^n} = \frac{0}{2} = 0$, so the n = 1 term of the series in part (c) can be discarded. Therefore $\frac{1}{2} = \sum_{n=1}^{\infty} \frac{n-1}{2^{n-1}} = \sum_{n=2}^{\infty} \frac{n-1}{2^{n-1}} = \sum_{m=1}^{\infty} \frac{m}{2^m}$, where in the last step we reindex by m = n - 1. Ergo the sum $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2}$.