Homework 6 Solutions

MTH 320

1. Problems from Section 14.
(14.2) (a) $\sum \frac{(n-1)}{n^{2}}$. Observe that $\frac{(n-1)}{n^{2}}=\frac{1}{n}\left(1-\frac{1}{n}\right) \geq \frac{1}{2 n}$ for $n \geq 2$. Ergo this series diverges by the Comparison Test.
(14.3)(b) $\sum \frac{2+\cos n}{3^{n}}$. Observe that $0<\frac{2+\cos n}{3^{n}} \leq \frac{3}{3^{n}}=\frac{1}{3^{n-1}}$, which is geometric. Therefore this series converges by the Comparison Test.
(14.3)(e) $\sum \frac{n \pi}{9}$. Observe that the sequence $a_{n}=\frac{n \pi}{9}$ has a subsequence $\left(a_{3}, a_{21}, a 39, \cdots\right)=$ $\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \cdots\right)$ consisting of all terms of the form $a_{18 m+3}$ which is constant at $\frac{\sqrt{3}}{2}$. Ergo $\lim a_{n} \neq 0$, so the series must diverge.
(14.4)(c) $\sum \frac{1}{2^{n}+n}$. Observe that $0<\sum \frac{1}{2^{n}+n}<\frac{1}{2^{n}}$, which is geometric. Therefore this series converges by the Comparison Test.
2. (14.5)Let $\sum a_{n}=A$ and $\sum b_{n}=B$. Without loss of generality both series start at $n=1$. Let $s_{n}=a_{1}+\cdots a_{n}$ be the partial sums of $\left(a_{n}\right)$ and $t_{n}=t_{1}+\cdots t_{n}$ be the partial sums of $\left(b_{n}\right)$. Then $\lim s_{n}=A, \lim t_{n}=B$.
(a) The partial sums of $\left(a_{n}+b_{n}\right)$ are $s_{n}+t_{n}$. Therefore $\sum\left(a_{n}+b_{n}\right)=\lim \left(s_{n}+t_{n}\right)=$ $\lim s_{n}+\lim t_{n}=A+B$ because both $\left(s_{n}\right)$ and $\left(t_{n}\right)$ converge.
(b)The partial sums of $\left(k a_{n}\right.$ are $k s_{n}$. Therefore $\sum k a_{n}=\lim k\left(s_{n}\right)=k \lim s_{n}=k A$.
(c) No. For consider the sequences

$$
\begin{aligned}
\left(a_{n}\right) & =\left(\frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \cdots\right) \\
\left(b_{n}\right) & =\left(0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, \cdots\right) .
\end{aligned}
$$

By our study of geometric series in class, $\sum a_{n}=1=\sum b_{n}$. So $A B=1$. However, $\left(a_{n} b_{n}\right)=(0,0,0,0,0, \cdots)$ and therefore $\sum a_{n} b_{n}=0$.
(14.8) Let $\sum a_{n}$ and $\sum b_{n}$ be convergent series of nonnegative numbers. Then consider the square $\left(\sqrt{a_{n}}-\sqrt{b_{n}}\right)^{2}=a_{n}-2 \sqrt{a_{n} b_{n}}+b_{n}^{2}$. Because squares are nonnegative, we see that $a_{n}-2 \sqrt{a_{n} b_{n}}+b_{n}^{2} \geq 0$, implying that $a_{n}+b_{n} \geq 2 \sqrt{a_{n} b_{n}} \geq \sqrt{a_{n} b_{n}}=\left|\sqrt{a_{n} b_{n}}\right|$. Now by Exercise 14.5 from last week, $\sum\left(a_{n}+b_{n}\right)$ converges, so by the Comparison Test,
$\sum \sqrt{a_{n} b_{n}}$ also converges.
$n_{k}=\max \left\{N_{k}, n_{k-1}\right\}+1$. Then $n_{k} \geq n_{k-1}$ and $\left|a_{n_{k}}\right|<\frac{1}{k^{2}}$. This gives us a sequence $\left(a_{n_{k}}\right)$ such that $\left|a_{n_{k}}\right|<\frac{1}{k^{2}}$ for all $k \geq 1$, so $\sum_{k=1}^{\infty} a_{n_{k}}$ converges by the Comparison Test.
(14.13) (a) Recall that $\sum_{n=0}^{\infty} r^{k}=\frac{1}{1-r}$ whenever $|r|<1$. Therefore

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n} & =\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}-1 \\
& =\frac{1}{1-\frac{2}{3}}-1 \\
& =3-1 \\
& =2 \\
\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n} & =\sum_{n=0}^{\infty}\left(-\frac{2}{3}\right)^{n}-1 \\
& =\frac{1}{1+\frac{2}{3}}-1 \\
& =\frac{1}{2}
\end{aligned}
$$

(b) Using the hint, we see that partial sums s_{n} of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ are

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n} \frac{1}{k(k+1)} \\
& =\sum_{k=1}^{n}\left[\frac{1}{k}-\frac{1}{k+1}\right] \\
& =\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots\left(\frac{1}{n}-\frac{1}{n+1}\right)\right] \\
& =\left[1-\frac{1}{n+1}\right]
\end{aligned}
$$

So $\lim s_{n}=1$, and the series sums to 1 .
(c) Extremely similar to (b).
(d) Observe that when $n=1, \frac{n-1}{2^{n}}=\frac{0}{2}=0$, so the $n=1$ term of the series in part
(c) can be discarded. Therefore $\frac{1}{2}=\sum_{n=1}^{\infty} \frac{n-1}{2^{n-1}}=\sum_{n=2}^{\infty} \frac{n-1}{2^{n-1}}=\sum_{m=1}^{\infty} \frac{m}{2^{m}}$, where in the last step we reindex by $m=n-1$. Ergo the sum $\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{1}{2}$.

