
Homework 5 Solutions
MTH 320

1. (11.2) We’ll do all five parts for each sequence in turn.

an = (−1)n. Two monotone subsequences are (x1, x3, x5, · · · ) = (1, 1, 1, · · · ), and
similarly for the even entries. The set of subsequential limits is {±1}. Therefore
lim sup an = 1 and lim inf an = −1. This sequence is bounded, |an| < 1 for all n, but
does not converge or diverge to ±∞.

bn = 1
n
. The sequence (bn) is monotone decreasing, so any subsequence is as well;

furthermore (bn) converges to 0, so any subsequence of (bn) also converges to 0. There-
fore the set of subsequential limits is {0}, and lim sup bn = lim inf bn = 0. Finally (bn)
is bounded, e.g. |bn| < 2 for all n.

un = (−1
2
)n. Any subequence (xni

) where all the ni are even is monotone decreas-
ing, and any subsequence (xni

) where all the ni are odd is monotone increasing. The
sequence un converges to 0, so the set of subsequential limits is {0}, and lim supun =
lim inf un = 0. Finally, un is bounded, e.g. |un| < 1 for all n.

xn = 5(−1)n . Possible monotone subsequences include (x1, x3, x5, · · · ) = (1
5
, 1
5
, 1
5
, · · · )

and (x2, x4, x6, · · · ) = (5, 5, 5, · · · ). Note that (5, 5, · · · , 5, 1
5
, 1
5
, · · · ) is also monotone

decreasing, and (1
5
, 1
5
, · · · 1

5
, 5, 5, 5, · · · ) is monotone increasing. The set of subsequen-

tial limits is {1
5
, 5}, and lim supxn = 5 while lim inf xn = 1

5
. The sequence xn neither

converges nor diverges to ±∞.

zn = n cos(nπ
4

). Observe that the values of this sequence are

(
1√
2
, 0,− 3√

2
,−4,− 5√

2
, 0,

7√
2
, 8, · · · )

and in general the sequence contains arbitrarily large positive numbers, arbitrarily
large negative numbers, and infinitely many zeroes. We can get a monotone sequence
by (for example) considering all terms of the form n( 1√

2
), the form n−1√

2
, or of the form

n, or of the form −n. We could also simply choose the zero subsequence. The set
of subsequential limits is {0,±∞}, and lim sup zn = ∞, while lim inf zn = −∞. The
sequence does not converge or diverge to ±∞, nor is it bounded.

2. (12.3) (a) We see that inf{sn : n > N} = 0 for all N , so lim inf sn = 0. Similarly
lim inf tn = 0, so lim inf sn + lim inf tn = 0.

(b) The sequence (sn + tn) is the repeating sequence (2, 2, 3, 1, 2, 2, 3, 1, · · · ). We see
that inf{sn + tn : n > N} = 1 for all N , so lim inf(sn + tn) = 1.



(c) We see that sup{sn : n > N} = 2 for all N , so lim sup sn = 2. Therefore
lim inf tn + lim sup sn = 0 + 2 = 2.

(g) The sequence (sntn) is the repeating sequence (0, 1, 2, 0, 0, 1, 2, 0, · · · ), so lim sup(sntn) =
2.

3. Further problems from Ross.

• (11.5)Let (qn) be an enumeration of all the rationals in (0, 1].

(a) We claim that the set S of subsequential limits is [0, 1]. Recall that s is a
subsequential limit of (qn) if and only if there are infinitely many points of (qn)
in (t− ε, t+ ε) for all ε. This clearly cannot hold for any t /∈ [0, 1]. For t ∈ (0, 1),
we claim that density of Q in R shows that there are infinitely many rationals in
each (t− ε, t+ ε). For suppose there are only finitely many. Then we can make a
list of rationals r1 < · · · < rn lying in (t− ε, t+ ε in ascending order. Consider the
interval (r1, r2). Density of Q in R tells us that this interval contains at least one
rational r. But r cannot be any of the ri on our list, because r1 < ri < r2. This
is a contradiction, so there must be infinitely many rationals in (t− ε, t+ ε) (and
indeed any interval in R). The argument is the same for 0 and 1, but 0 does merit
a moment’s additional attention: even though 0 is not included in the sequence,
there are infinitely many rationals in (0, ε) ⊂ (−ε, ε). A similar argument works
for 1.

(b) Recall from Theorem 11.8 that lim sup qn = supS = 1 and lim inf qn = inf S =
0. Note that this would have been extremely annoying to compute by hand!

• (11.9b) There is no such sequence. For, recall from Theorem 11.8 that if S is
the set of subsequential limits of a sequence (sn), and t is the limit of some set of
points tn in S, then t is in S. However, all the points of the sequence (tn) = ( 1

n
)∞n=1

are in (0, 1), but the limit t = 0 of this sequence is not.

• (12.4) Let (sn) and (tn) be two sequences. For any N > 0, if n > N , we have
sn ≤ sup{sm : m > N} and tn ≤ sup{sm : m > N}. Therefore for n > N ,
sn + tn ≤ sup{sm : m > N} + sup{sm : m > N}. Hence sup{sn + tn :
n > N} ≤ sup{sn : n > N} + sup{sn : n > N}. Therefore applying Exer-
cise 9.9(c), which is proved below, the same inequality holds in the limit, i.e.
lim sup sn + tn = lim(sup{sn + tn : n > N}) ≤ lim(sup{sn : m > N} + sup{tn :
m > N}) = lim sup sn + lim sup tn.

Claim(Exercise 9.9c, referenced in the hint): If (an) and (bn) are two conver-
gent sequences satisfying an ≤ bn for all n then lim an ≤ lim bn. Proof: Suppose
not. Then suppose lim an = a > lim bn = b. Let ε = a−b

2
. Then there exists N1

such that n > N1 implies an > a− ε, and N2 such that n > N2 implies bn < b+ ε.



But then for n > max{N1, N2}, bn < b+ ε = a+b
2

= a− ε = an, a contradiction.

• (12.6) For (a), we have (sn) a bounded sequence, and k > 0. If vN is the
supremum of {sn : n > N}, by multiplicative invariance of the order relation,
kvN is the supremum of {ksn : n > N}. Ergo lim sup ksn = limN→∞ kvN =
k limN→∞ vN = k lim sup sn. A similar proof shows the same result for the lim inf
in (b). However, multiplication by a negative number is order reversing, so if
k < 0, kvN is the infimum of {ksn : n > N , and therefore after taking limits,
lim inf ksn = k lim sup ksn. A similar result holds for lim sup ksn.

• (12.10) Suppose (sn) is bounded, so that |sn| < M for some M . Then in particular
for all N , vN = sup{|sn| : n > N} < M , implying that lim sup |sn| ≤ M < ∞.
Conversely, if lim sup |sn| = M < ∞, then there exists N such that sup{|sn| :
n > N} < M + 1, and in particular |sn| < M + 1 for all n > N . Let M ′ =
max{|s1|, · · · , |sN |,M + 1}. Then |sn| < M ′ for all n. Hence (sn) is bounded.

4. Problem 5. Say (sn) is a sequence. Then pick any real number v in [0, 1) and consider
the binary decimal expansion of v. Choose a subsequence (snk

) of (sn) by including
sn in the subsequence if and only if the nth digit of the decimal expansion is zero.
This gives a unique subsequence of (sn) associated to v. (Note that every binary
decimal expansion of a real number contains infinitely many zeroes,so this is in fact
a subsequence and not a finite list.) Therefore the set of subsequences of (sn) is
uncountable: if it were possible to list all subsequences of (sn), it would be possible to
list all real numbers in [0, 1).


