Homework 5 Solutions

MTH 320

1. (11.2) We'll do all five parts for each sequence in turn.
$a_{n}=(-1)^{n}$. Two monotone subsequences are $\left(x_{1}, x_{3}, x_{5}, \cdots\right)=(1,1,1, \cdots)$, and similarly for the even entries. The set of subsequential limits is $\{ \pm 1\}$. Therefore $\lim \sup a_{n}=1$ and $\lim \inf a_{n}=-1$. This sequence is bounded, $\left|a_{n}\right|<1$ for all n, but does not converge or diverge to $\pm \infty$.
$b_{n}=\frac{1}{n}$. The sequence $\left(b_{n}\right)$ is monotone decreasing, so any subsequence is as well; furthermore $\left(b_{n}\right)$ converges to 0 , so any subsequence of $\left(b_{n}\right)$ also converges to 0 . Therefore the set of subsequential limits is $\{0\}$, and $\limsup b_{n}=\lim \inf b_{n}=0$. Finally $\left(b_{n}\right)$ is bounded, e.g. $\left|b_{n}\right|<2$ for all n.
$u_{n}=\left(-\frac{1}{2}\right)^{n}$. Any subequence $\left(x_{n_{i}}\right)$ where all the n_{i} are even is monotone decreasing, and any subsequence $\left(x_{n_{i}}\right)$ where all the n_{i} are odd is monotone increasing. The sequence u_{n} converges to 0 , so the set of subsequential limits is $\{0\}$, and $\lim \sup u_{n}=$ $\lim \inf u_{n}=0$. Finally, u_{n} is bounded, e.g. $\left|u_{n}\right|<1$ for all n.
$x_{n}=5^{(-1)^{n}}$. Possible monotone subsequences include $\left(x_{1}, x_{3}, x_{5}, \cdots\right)=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \cdots\right)$ and $\left(x_{2}, x_{4}, x_{6}, \cdots\right)=(5,5,5, \cdots)$. Note that $\left(5,5, \cdots, 5, \frac{1}{5}, \frac{1}{5}, \cdots\right)$ is also monotone decreasing, and $\left(\frac{1}{5}, \frac{1}{5}, \cdots \frac{1}{5}, 5,5,5, \cdots\right)$ is monotone increasing. The set of subsequential limits is $\left\{\frac{1}{5}, 5\right\}$, and $\limsup x_{n}=5$ while $\lim \inf x_{n}=\frac{1}{5}$. The sequence x_{n} neither converges nor diverges to $\pm \infty$.
$z_{n}=n \cos \left(\frac{n \pi}{4}\right)$. Observe that the values of this sequence are

$$
\left(\frac{1}{\sqrt{2}}, 0,-\frac{3}{\sqrt{2}},-4,-\frac{5}{\sqrt{2}}, 0, \frac{7}{\sqrt{2}}, 8, \cdots\right)
$$

and in general the sequence contains arbitrarily large positive numbers, arbitrarily large negative numbers, and infinitely many zeroes. We can get a monotone sequence by (for example) considering all terms of the form $n\left(\frac{1}{\sqrt{2}}\right)$, the form $n \frac{-1}{\sqrt{2}}$, or of the form n, or of the form $-n$. We could also simply choose the zero subsequence. The set of subsequential limits is $\{0, \pm \infty\}$, and $\limsup z_{n}=\infty$, while $\lim \inf z_{n}=-\infty$. The sequence does not converge or diverge to $\pm \infty$, nor is it bounded.
2. (12.3) (a) We see that $\inf \left\{s_{n}: n>N\right\}=0$ for all N, so $\lim \inf s_{n}=0$. Similarly $\liminf t_{n}=0$, so $\liminf s_{n}+\liminf t_{n}=0$.
(b) The sequence $\left(s_{n}+t_{n}\right)$ is the repeating sequence $(2,2,3,1,2,2,3,1, \cdots)$. We see that $\inf \left\{s_{n}+t_{n}: n>N\right\}=1$ for all N, so $\liminf \left(s_{n}+t_{n}\right)=1$.
(c) We see that $\sup \left\{s_{n}: n>N\right\}=2$ for all N, so $\lim \sup s_{n}=2$. Therefore $\liminf t_{n}+\limsup s_{n}=0+2=2$.
(g) The sequence $\left(s_{n} t_{n}\right)$ is the repeating sequence $(0,1,2,0,0,1,2,0, \cdots)$, so $\lim \sup \left(s_{n} t_{n}\right)=$ 2.
3. Further problems from Ross.

- (11.5)Let $\left(q_{n}\right)$ be an enumeration of all the rationals in $(0,1]$.
(a) We claim that the set S of subsequential limits is $[0,1]$. Recall that s is a subsequential limit of $\left(q_{n}\right)$ if and only if there are infinitely many points of $\left(q_{n}\right)$ in $(t-\epsilon, t+\epsilon)$ for all ϵ. This clearly cannot hold for any $t \notin[0,1]$. For $t \in(0,1)$, we claim that density of \mathbb{Q} in \mathbb{R} shows that there are infinitely many rationals in each $(t-\epsilon, t+\epsilon)$. For suppose there are only finitely many. Then we can make a list of rationals $r_{1}<\cdots<r_{n}$ lying in $(t-\epsilon, t+\epsilon$ in ascending order. Consider the interval $\left(r_{1}, r_{2}\right)$. Density of \mathbb{Q} in \mathbb{R} tells us that this interval contains at least one rational r. But r cannot be any of the r_{i} on our list, because $r_{1}<r_{i}<r_{2}$. This is a contradiction, so there must be infinitely many rationals in $(t-\epsilon, t+\epsilon)$ (and indeed any interval in \mathbb{R}). The argument is the same for 0 and 1 , but 0 does merit a moment's additional attention: even though 0 is not included in the sequence, there are infinitely many rationals in $(0, \epsilon) \subset(-\epsilon, \epsilon)$. A similar argument works for 1 .
(b) Recall from Theorem 11.8 that $\lim \sup q_{n}=\sup S=1$ and $\lim \inf q_{n}=\inf S=$ 0 . Note that this would have been extremely annoying to compute by hand!
- (11.9b) There is no such sequence. For, recall from Theorem 11.8 that if S is the set of subsequential limits of a sequence $\left(s_{n}\right)$, and t is the limit of some set of points t_{n} in S, then t is in S. However, all the points of the sequence $\left(t_{n}\right)=\left(\frac{1}{n}\right)_{n=1}^{\infty}$ are in $(0,1)$, but the limit $t=0$ of this sequence is not.
- (12.4) Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be two sequences. For any $N>0$, if $n>N$, we have $s_{n} \leq \sup \left\{s_{m}: m>N\right\}$ and $t_{n} \leq \sup \left\{s_{m}: m>N\right\}$. Therefore for $n>N$, $s_{n}+t_{n} \leq \sup \left\{s_{m}: m>N\right\}+\sup \left\{s_{m}: m>N\right\}$. Hence $\sup \left\{s_{n}+t_{n}:\right.$ $n>N\} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{s_{n}: n>N\right\}$. Therefore applying Exercise $9.9(\mathrm{c})$, which is proved below, the same inequality holds in the limit, i.e. $\limsup s_{n}+t_{n}=\lim \left(\sup \left\{s_{n}+t_{n}: n>N\right\}\right) \leq \lim \left(\sup \left\{s_{n}: m>N\right\}+\sup \left\{t_{n}:\right.\right.$ $m>N\})=\lim \sup s_{n}+\lim \sup t_{n}$.

Claim(Exercise 9.9c, referenced in the hint): If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are two convergent sequences satisfying $a_{n} \leq b_{n}$ for all n then $\lim a_{n} \leq \lim b_{n}$. Proof: Suppose not. Then suppose $\lim a_{n}=a>\lim b_{n}=b$. Let $\epsilon=\frac{a-b}{2}$. Then there exists N_{1} such that $n>N_{1}$ implies $a_{n}>a-\epsilon$, and N_{2} such that $n>N_{2}$ implies $b_{n}<b+\epsilon$.

But then for $n>\max \left\{N_{1}, N_{2}\right\}, b_{n}<b+\epsilon=\frac{a+b}{2}=a-\epsilon=a_{n}$, a contradiction.

- (12.6) For (a), we have $\left(s_{n}\right)$ a bounded sequence, and $k>0$. If v_{N} is the supremum of $\left\{s_{n}: n>N\right\}$, by multiplicative invariance of the order relation, $k v_{N}$ is the supremum of $\left\{k s_{n}: n>N\right\}$. Ergo $\limsup k s_{n}=\lim _{N \rightarrow \infty} k v_{N}=$ $k \lim _{N \rightarrow \infty} v_{N}=k \lim \sup s_{n}$. A similar proof shows the same result for the liminf in (b). However, multiplication by a negative number is order reversing, so if $k<0, k v_{N}$ is the infimum of $\left\{k s_{n}: n>N\right.$, and therefore after taking limits, $\lim \inf k s_{n}=k \lim \sup k s_{n}$. A similar result holds for $\lim \sup k s_{n}$.
- (12.10) Suppose $\left(s_{n}\right)$ is bounded, so that $\left|s_{n}\right|<M$ for some M. Then in particular for all $N, v_{N}=\sup \left\{\left|s_{n}\right|: n>N\right\}<M$, implying that $\limsup \left|s_{n}\right| \leq M<\infty$. Conversely, if $\lim \sup \left|s_{n}\right|=M<\infty$, then there exists N such that $\sup \left\{\left|s_{n}\right|\right.$: $n>N\}<M+1$, and in particular $\left|s_{n}\right|<M+1$ for all $n>N$. Let $M^{\prime}=$ $\max \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|, M+1\right\}$. Then $\left|s_{n}\right|<M^{\prime}$ for all n. Hence $\left(s_{n}\right)$ is bounded.

4. Problem 5. Say $\left(s_{n}\right)$ is a sequence. Then pick any real number v in $[0,1)$ and consider the binary decimal expansion of v. Choose a subsequence $\left(s_{n_{k}}\right)$ of $\left(s_{n}\right)$ by including s_{n} in the subsequence if and only if the nth digit of the decimal expansion is zero. This gives a unique subsequence of $\left(s_{n}\right)$ associated to v. (Note that every binary decimal expansion of a real number contains infinitely many zeroes,so this is in fact a subsequence and not a finite list.) Therefore the set of subsequences of $\left(s_{n}\right)$ is uncountable: if it were possible to list all subsequences of $\left(s_{n}\right)$, it would be possible to list all real numbers in $[0,1)$.
