
Homework 4 Solutions
MTH 320

2. Problems from Ross.

• (9.10) (a) Suppose sn → ∞. Let k > 0. Then for M > 0, there exists N such
that n > N implies sn >

M
k

, so ksn > M . Ergo ksn →∞.

(b) Suppose sn →∞. Then given M < 0, there exists N such that n > N implies
sn > −M , so that −sn < M . Ergo (−sn) diverges to −∞. The converse is similar.

(c)Let sn → ∞ and k < 0. Then by (a), (−k)sn → ∞ and therefore by (b),
−(−k)sn = ksn → −∞.

• (9.12) (a) Assume L < 1. Following the hint, we choose a such that L < a < 1.
Let ε = a − L. Choose an integer N ′ such that n > N ′ implies || sn+1

sn
| − L| < ε.

Let N = N ′ + 1, then n ≥ N implies || sn+1

sn
| − L| < ε, or equivalently L − ε <

| sn+1

sn
| < L + ε = a. Therefore since | sn+1

sn
| < a for n > N , we have |sn+1| ≤ a|sn|

for n ≥ N . Therefore inductively |sn| ≤ an−N |sN | for all n ≥ N . By Theorem
9.7(b), since |a| < 1, lim an−N = 0, so since |sN | is a constant, lim an−N |sN | = 0.
Ergo, by exercise 8.5(b) (or by a quick proof) lim sn = 0 as well.

(b) Assume L > 1. Then consider the sequence tn = 1
|sn| . We see that lim | tn+1

tn
| =

lim | sn
sn+1
| = lim 1

| sn+1
sn
|

= 1
L
< 1. Ergo by part (a), lim tn = 0. Hence by Theorem

9.10, lim |sn| =∞.

• (9.14) Let sn = an

np .

Observe that | sn+1

sn
| = | an+1np

(n+1)pan
= |a|(̇ n

n+1
)p. Therefore lim | sn+1

sn
| = |a| lim( n

n+1
)p

We claim lim( n
n+1

)p = 1; for a proof, see below. Therefore lim | sn+1

sn
| = |a|. If

|a| ≤ 1, by (9.12) part (a), lim sn = 0. If a > 1, then lim |sn| = ∞, but sn = an

np

is always positive, so in fact lim sn = ∞. If a < −1, it is still the case that
lim |sn| =∞, but for n even, sn > 0, and for n odd, sn < 0, so (sn) has no limit.

Proof that lim( n
n+1

)p = 1. Observe that n
n+1

= (1 − 1
n+1

. Given ε < 0, let

N = 1

1−(1+ε)
1
p
−1. Then a computation shows that n > N implies 1−(1− 1

n+1
)p < ε.

• (10.6) (a) We claim (sn) is Cauchy. Let ε > 0, and choose N such that 2−N−1 < ε.
This is certainly possible since 2n →∞, so 2−n → 0. Then let n,m ¿ N . Without
loss of generality, m < n, and we have |sn − sm| = |(sn − sn−1) + (sn−1 − sn−2 +
· · · (sm+1−sm)| < |(sn−sn−1|+ · · ·+ |sm+1−sm|. Now observe that since m > N ,
|sm+1 − sm| < 2−N , and more generally since m+ k > N + k, |sm+k+1 − sm+k| <
2−N−k. Applying this principle for k = 0, 1, · · · , n− 1 yields



|sn − sm| < 2−N−k + · · ·+ 2−N−1 + 2−N

= 2−N−k(1 + 2 + 22 + ...+ 2k)

= 2−N−k(2k+1 − 1)

= 2−N−1 − 2−N−k

< 2−N−1

< ε

Here the third line is an application of an induction done in class during the first
lecture. So (sn) is Cauchy, hence it converges.

(b) No. Let us produce a counterexample. Consider the sequence (sn) whose
terms are sn = 1 + 1

2
+ · · ·+ 1

n
. Then |sn+1 − sn| = 1

n+1
< 1

n
. However, we claim

sn does not converge (hence cannot be Cauchy). For observe that

s1 = 1

s2 = 1 +
1

2

s4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
> 1 + 2

(
1

2

)
s8 = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
> 1 +

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
= 1 + 3

(
1

2

)

And an inductive argument shows that s2n ≥ 1+ n
2
. So the terms sn are arbitrarily

large, and sn diverges to ∞.

• (10.7) Let S be a bounded nonempty subset of R such that the supremum s′ =
supS is not an element of S. For any n ∈ N, the difference s′ − 1

n
is less than

s′, hence is not an upper bound for S. Therefore we can find an element xn ∈ S
such that xn > s′ − 1

n
, or equivalently 1

n
> s′ − xn. Choose one such element for

each n, and consider the sequence (xn) = (x1, x2, · · · ). We claim the limit of (xn)
is s′. For given ε > 0, let N = 1

ε
. Then for n > N , |s′ − xn| = s′ − xn < 1

n
< ε.

Since ε was arbitrary, we are done.

• (10.10) Let s1 = 1 and sn+1 = 1
3
(sn + 1) for n ≥ 1.

(a) We compute s2 = 2
3
, s3 = 5

9
, and s4 = 14

27
.

(b) We claim that sn >
1
2

for all n. Since s1 = 1, the claim is true in the base case
n = 1. Now let us assume the claim is true for n and try to show that it holds
for n+ 1. We have sn+1 = 1

3
(sn + 1) < 1

3
(1
2

+ 1) = 1
3
(3
2
) = 1

2
. Ergo if the claim is

true for n, it is true for n+1. Therefore the inductive step is true and we are done.



(c) We claim (sn) is decreasing. It suffices to show that sn+1−sn is in general a neg-
ative number. We compute sn+1−sn = 1

3
(sn+1)−sn = 1

3
− 2

3
(sn) < 1

3
− 2

3
(1
2
) = 0.

Here the third step follows from part (b), i.e. sn <
1
2

for all n. Ergo sn+1− sn < 0
for all n, so sn+1 < sn for all n, and sn is decreasing.

(d) Because (sn) is decreasing and bounded below, (sn) must converge to some
limit s. Therefore we can take the limit of both sides of the relationship sn+1 =
1
3
(sn + 1) using the limit laws, obtaining s = 1

3
(s + 1). Therefore, 2

3
s = 1

3
, so

s = 1
2
.

3. (a) By exercise (8.9) in Ross, if (sn) is a convergent sequence of elements of [a, b], then
lim sn is also in [a, b]. Ergo [a, b] is closed.

(b) One example of a closed unbounded subset of R is Z; the only sequences in Z
which have limits are those sequences which are eventually constant.

(c) Let S be closed and bounded above. By exercise (10.7), there is a sequence of
points (sn) in S such that lim sn = supS. Therefore since S is closed, supS ∈ S.
Therefore S has a maximum.

4. (a) Since sn+1 − sn = 1
2n+1 > 0, (sn) is increasing. We note that 2nsn = 2n + 2n−1 +

· · · 2 + 1 = 2n+1 − 1, so in fact sn = 2 − 1
2n
< 2, and (sn) is bounded. (Later we will

introduce a general formula for this sort of computation.)

(b) Since (sn) is monotone bounded, it converges to some limit s, so we can take
the limit of both sides of sn+1 = 1

2
sn + 1 to obtain s = s

2
+ 1, implying that s = 2.

(c) This sequence diverges, so the limit laws do not apply!


