Homework 4 Solutions

MTH 320
2. Problems from Ross.

- (9.10) (a) Suppose $s_{n} \rightarrow \infty$. Let $k>0$. Then for $M>0$, there exists N such that $n>N$ implies $s_{n}>\frac{M}{k}$, so $k s_{n}>M$. Ergo $k s_{n} \rightarrow \infty$.
(b) Suppose $s_{n} \rightarrow \infty$. Then given $M<0$, there exists N such that $n>N$ implies $s_{n}>-M$, so that $-s_{n}<M$. Ergo $\left(-s_{n}\right)$ diverges to $-\infty$. The converse is similar.
(c)Let $s_{n} \rightarrow \infty$ and $k<0$. Then by (a), $(-k) s_{n} \rightarrow \infty$ and therefore by (b), $-(-k) s_{n}=k s_{n} \rightarrow-\infty$.
- (9.12) (a) Assume $L<1$. Following the hint, we choose a such that $L<a<1$. Let $\epsilon=a-L$. Choose an integer N^{\prime} such that $n>N^{\prime}$ implies $\left|\left|\frac{s_{n+1}}{s_{n}}\right|-L\right|<\epsilon$. Let $N=N^{\prime}+1$, then $n \geq N$ implies $\left|\left|\frac{s_{n+1}}{s_{n}}\right|-L\right|<\epsilon$, or equivalently $L-\epsilon<$ $\left|\frac{s_{n+1}}{s_{n}}\right|<L+\epsilon=a$. Therefore since $\left|\frac{s_{n+1}}{s_{n}}\right|<a$ for $n>N$, we have $\left|s_{n+1}\right| \leq a\left|s_{n}\right|$ for $n \geq N$. Therefore inductively $\left|s_{n}\right| \leq a^{n-N}\left|s_{N}\right|$ for all $n \geq N$. By Theorem $9.7(\mathrm{~b})$, since $|a|<1, \lim a^{n-N}=0$, so since $\left|s_{N}\right|$ is a constant, $\lim a^{n-N}\left|s_{N}\right|=0$. Ergo, by exercise 8.5(b) (or by a quick proof) $\lim s_{n}=0$ as well.
(b) Assume $L>1$. Then consider the sequence $t_{n}=\frac{1}{\left|s_{n}\right|}$. We see that $\lim \left|\frac{t_{n+1}}{t_{n}}\right|=$ $\lim \left|\frac{s_{n}}{s_{n+1}}\right|=\lim \frac{1}{\left|\frac{s_{n+1}}{s_{n}}\right|}=\frac{1}{L}<1$. Ergo by part (a), $\lim t_{n}=0$. Hence by Theorem 9.10, $\lim \left|s_{n}\right|=\infty$.
- (9.14) Let $s_{n}=\frac{a^{n}}{n^{p}}$.

Observe that $\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\frac{a^{n+1} n^{p}}{(n+1)^{p} a^{n}}=|a|\left(\frac{n}{n+1}\right)^{p}\right.$. Therefore $\left.\lim \right| \frac{s_{n+1}}{s_{n}}\left|=|a| \lim \left(\frac{n}{n+1}\right)^{p}\right.$ We claim $\lim \left(\frac{n}{n+1}\right)^{p}=1$; for a proof, see below. Therefore $\lim \left|\frac{s_{n+1}}{s_{n}}\right|=|a|$. If $|a| \leq 1$, by (9.12) part (a), $\lim s_{n}=0$. If $a>1$, then $\lim \left|s_{n}\right|=\infty$, but $s_{n}=\frac{a^{n}}{n^{p}}$ is always positive, so in fact $\lim s_{n}=\infty$. If $a<-1$, it is still the case that $\lim \left|s_{n}\right|=\infty$, but for n even, $s_{n}>0$, and for n odd, $s_{n}<0$, so $\left(s_{n}\right)$ has no limit.

Proof that $\lim \left(\frac{n}{n+1}\right)^{p}=1$. Observe that $\frac{n}{n+1}=\left(1-\frac{1}{n+1}\right.$. Given $\epsilon<0$, let $N=\frac{1}{1-(1+\epsilon)^{\frac{1}{p}}}-1$. Then a computation shows that $n>N$ implies $1-\left(1-\frac{1}{n+1}\right)^{p}<\epsilon$.

- (10.6) (a) We claim $\left(s_{n}\right)$ is Cauchy. Let $\epsilon>0$, and choose N such that $2^{-N-1}<\epsilon$. This is certainly possible since $2^{n} \rightarrow \infty$, so $2^{-n} \rightarrow 0$. Then let $n, m \& N$. Without loss of generality, $m<n$, and we have $\left|s_{n}-s_{m}\right|=\mid\left(s_{n}-s_{n-1}\right)+\left(s_{n-1}-s_{n-2}+\right.$ $\cdots\left(s_{m+1}-s_{m}\right)|<|\left(s_{n}-s_{n-1}\left|+\cdots+\left|s_{m+1}-s_{m}\right|\right.\right.$. Now observe that since $m>N$, $\left|s_{m+1}-s_{m}\right|<2^{-N}$, and more generally since $m+k>N+k,\left|s_{m+k+1}-s_{m+k}\right|<$ 2^{-N-k}. Applying this principle for $k=0,1, \cdots, n-1$ yields

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & <2^{-N-k}+\cdots+2^{-N-1}+2^{-N} \\
& =2^{-N-k}\left(1+2+2^{2}+\ldots+2^{k}\right) \\
& =2^{-N-k}\left(2^{k+1}-1\right) \\
& =2^{-N-1}-2^{-N-k} \\
& <2^{-N-1} \\
& <\epsilon
\end{aligned}
$$

Here the third line is an application of an induction done in class during the first lecture. So $\left(s_{n}\right)$ is Cauchy, hence it converges.
(b) No. Let us produce a counterexample. Consider the sequence (s_{n}) whose terms are $s_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$. Then $\left|s_{n+1}-s_{n}\right|=\frac{1}{n+1}<\frac{1}{n}$. However, we claim s_{n} does not converge (hence cannot be Cauchy). For observe that

$$
\begin{aligned}
& s_{1}=1 \\
& s_{2}=1+\frac{1}{2} \\
& s_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}>1+2\left(\frac{1}{2}\right) \\
& s_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=1+3\left(\frac{1}{2}\right)
\end{aligned}
$$

And an inductive argument shows that $s_{2^{n}} \geq 1+\frac{n}{2}$. So the terms s_{n} are arbitrarily large, and s_{n} diverges to ∞.

- (10.7) Let S be a bounded nonempty subset of \mathbb{R} such that the supremum $s^{\prime}=$ $\sup S$ is not an element of S. For any $n \in \mathbb{N}$, the difference $s^{\prime}-\frac{1}{n}$ is less than s^{\prime}, hence is not an upper bound for S. Therefore we can find an element $x_{n} \in S$ such that $x_{n}>s^{\prime}-\frac{1}{n}$, or equivalently $\frac{1}{n}>s^{\prime}-x_{n}$. Choose one such element for each n, and consider the sequence $\left(x_{n}\right)=\left(x_{1}, x_{2}, \cdots\right)$. We claim the limit of $\left(x_{n}\right)$ is s^{\prime}. For given $\epsilon>0$, let $N=\frac{1}{\epsilon}$. Then for $n>N,\left|s^{\prime}-x_{n}\right|=s^{\prime}-x_{n}<\frac{1}{n}<\epsilon$. Since ϵ was arbitrary, we are done.
- (10.10) Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) We compute $s_{2}=\frac{2}{3}, s_{3}=\frac{5}{9}$, and $s_{4}=\frac{14}{27}$.
(b) We claim that $s_{n}>\frac{1}{2}$ for all n. Since $s_{1}=1$, the claim is true in the base case $n=1$. Now let us assume the claim is true for n and try to show that it holds for $n+1$. We have $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)<\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{3}\left(\frac{3}{2}\right)=\frac{1}{2}$. Ergo if the claim is true for n, it is true for $n+1$. Therefore the inductive step is true and we are done.
(c) We claim $\left(s_{n}\right)$ is decreasing. It suffices to show that $s_{n+1}-s_{n}$ is in general a negative number. We compute $s_{n+1}-s_{n}=\frac{1}{3}\left(s_{n}+1\right)-s_{n}=\frac{1}{3}-\frac{2}{3}\left(s_{n}\right)<\frac{1}{3}-\frac{2}{3}\left(\frac{1}{2}\right)=0$. Here the third step follows from part (b), i.e. $s_{n}<\frac{1}{2}$ for all n. Ergo $s_{n+1}-s_{n}<0$ for all n, so $s_{n+1}<s_{n}$ for all n, and s_{n} is decreasing.
(d) Because $\left(s_{n}\right)$ is decreasing and bounded below, $\left(s_{n}\right)$ must converge to some limit s. Therefore we can take the limit of both sides of the relationship $s_{n+1}=$ $\frac{1}{3}\left(s_{n}+1\right)$ using the limit laws, obtaining $s=\frac{1}{3}(s+1)$. Therefore, $\frac{2}{3} s=\frac{1}{3}$, so $s=\frac{1}{2}$.

3. (a) By exercise (8.9) in Ross, if $\left(s_{n}\right)$ is a convergent sequence of elements of $[a, b]$, then $\lim s_{n}$ is also in $[a, b]$. Ergo $[a, b]$ is closed.
(b) One example of a closed unbounded subset of \mathbb{R} is \mathbb{Z}; the only sequences in \mathbb{Z} which have limits are those sequences which are eventually constant.
(c) Let S be closed and bounded above. By exercise (10.7), there is a sequence of points $\left(s_{n}\right)$ in S such that $\lim s_{n}=\sup S$. Therefore since S is closed, $\sup S \in S$. Therefore S has a maximum.
4. (a) Since $s_{n+1}-s_{n}=\frac{1}{2^{n+1}}>0,\left(s_{n}\right)$ is increasing. We note that $2^{n} s_{n}=2^{n}+2^{n-1}+$ $\cdots 2+1=2^{n+1}-1$, so in fact $s_{n}=2-\frac{1}{2^{n}}<2$, and $\left(s_{n}\right)$ is bounded. (Later we will introduce a general formula for this sort of computation.)
(b) Since $\left(s_{n}\right)$ is monotone bounded, it converges to some limit s, so we can take the limit of both sides of $s_{n+1}=\frac{1}{2} s_{n}+1$ to obtain $s=\frac{s}{2}+1$, implying that $s=2$.
(c) This sequence diverges, so the limit laws do not apply!
