Homework 4 Solutions

MTH 320

- 2. Problems from Ross.
 - (9.10) (a) Suppose $s_n \to \infty$. Let k > 0. Then for M > 0, there exists N such that n > N implies $s_n > \frac{M}{k}$, so $ks_n > M$. Ergo $ks_n \to \infty$.

(b) Suppose $s_n \to \infty$. Then given M < 0, there exists N such that n > N implies $s_n > -M$, so that $-s_n < M$. Ergo $(-s_n)$ diverges to $-\infty$. The converse is similar.

(c)Let $s_n \to \infty$ and k < 0. Then by (a), $(-k)s_n \to \infty$ and therefore by (b), $-(-k)s_n = ks_n \to -\infty$.

• (9.12) (a) Assume L < 1. Following the hint, we choose a such that L < a < 1. Let $\epsilon = a - L$. Choose an integer N' such that n > N' implies $||\frac{s_{n+1}}{s_n}| - L| < \epsilon$. Let N = N' + 1, then $n \ge N$ implies $||\frac{s_{n+1}}{s_n}| - L| < \epsilon$, or equivalently $L - \epsilon < |\frac{s_{n+1}}{s_n}| < L + \epsilon = a$. Therefore since $|\frac{s_{n+1}}{s_n}| < a$ for n > N, we have $|s_{n+1}| \le a|s_n|$ for $n \ge N$. Therefore inductively $|s_n| \le a^{n-N}|s_N|$ for all $n \ge N$. By Theorem 9.7(b), since |a| < 1, $\lim a^{n-N} = 0$, so since $|s_N|$ is a constant, $\lim a^{n-N}|s_N| = 0$. Ergo, by exercise 8.5(b) (or by a quick proof) $\lim s_n = 0$ as well.

(b) Assume L > 1. Then consider the sequence $t_n = \frac{1}{|s_n|}$. We see that $\lim \left|\frac{t_{n+1}}{t_n}\right| = \lim \left|\frac{s_n}{s_{n+1}}\right| = \lim \left|\frac{1}{\frac{s_{n+1}}{s_n}}\right| = \frac{1}{L} < 1$. Ergo by part (a), $\lim t_n = 0$. Hence by Theorem 9.10, $\lim |s_n| = \infty$.

• (9.14) Let $s_n = \frac{a^n}{n^p}$.

Observe that $\left|\frac{s_{n+1}}{s_n}\right| = \left|\frac{a^{n+1}n^p}{(n+1)^p a^n}\right| = |a|(\frac{n}{n+1})^p$. Therefore $\lim \left|\frac{s_{n+1}}{s_n}\right| = |a| \lim(\frac{n}{n+1})^p$ We claim $\lim(\frac{n}{n+1})^p = 1$; for a proof, see below. Therefore $\lim \left|\frac{s_{n+1}}{s_n}\right| = |a|$. If $|a| \leq 1$, by (9.12) part (a), $\lim s_n = 0$. If a > 1, then $\lim |s_n| = \infty$, but $s_n = \frac{a^n}{n^p}$ is always positive, so in fact $\lim s_n = \infty$. If a < -1, it is still the case that $\lim |s_n| = \infty$, but for n even, $s_n > 0$, and for n odd, $s_n < 0$, so (s_n) has no limit.

Proof that $\lim_{n \to 1} (\frac{n}{n+1})^p = 1$. Observe that $\frac{n}{n+1} = (1 - \frac{1}{n+1})^n$. Given $\epsilon < 0$, let $N = \frac{1}{1 - (1+\epsilon)^{\frac{1}{p}}} - 1$. Then a computation shows that n > N implies $1 - (1 - \frac{1}{n+1})^p < \epsilon$.

• (10.6) (a) We claim (s_n) is Cauchy. Let $\epsilon > 0$, and choose N such that $2^{-N-1} < \epsilon$. This is certainly possible since $2^n \to \infty$, so $2^{-n} \to 0$. Then let $n, m \ge N$. Without loss of generality, m < n, and we have $|s_n - s_m| = |(s_n - s_{n-1}) + (s_{n-1} - s_{n-2} + \cdots + (s_{m+1} - s_m)| < |(s_n - s_{n-1}| + \cdots + |s_{m+1} - s_m|$. Now observe that since m > N, $|s_{m+1} - s_m| < 2^{-N}$, and more generally since m + k > N + k, $|s_{m+k+1} - s_{m+k}| < 2^{-N-k}$. Applying this principle for $k = 0, 1, \cdots, n-1$ yields

$$|s_n - s_m| < 2^{-N-k} + \dots + 2^{-N-1} + 2^{-N}$$

= $2^{-N-k}(1 + 2 + 2^2 + \dots + 2^k)$
= $2^{-N-k}(2^{k+1} - 1)$
= $2^{-N-1} - 2^{-N-k}$
< 2^{-N-1}

Here the third line is an application of an induction done in class during the first lecture. So (s_n) is Cauchy, hence it converges.

(b) No. Let us produce a counterexample. Consider the sequence (s_n) whose terms are $s_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$. Then $|s_{n+1} - s_n| = \frac{1}{n+1} < \frac{1}{n}$. However, we claim s_n does not converge (hence cannot be Cauchy). For observe that

$$s_{1} = 1$$

$$s_{2} = 1 + \frac{1}{2}$$

$$s_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} > 1 + 2\left(\frac{1}{2}\right)$$

$$s_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 1 + 3\left(\frac{1}{2}\right)$$

And an inductive argument shows that $s_{2^n} \ge 1 + \frac{n}{2}$. So the terms s_n are arbitrarily large, and s_n diverges to ∞ .

- (10.7) Let S be a bounded nonempty subset of \mathbb{R} such that the supremum $s' = \sup S$ is not an element of S. For any $n \in \mathbb{N}$, the difference $s' \frac{1}{n}$ is less than s', hence is not an upper bound for S. Therefore we can find an element $x_n \in S$ such that $x_n > s' \frac{1}{n}$, or equivalently $\frac{1}{n} > s' x_n$. Choose one such element for each n, and consider the sequence $(x_n) = (x_1, x_2, \cdots)$. We claim the limit of (x_n) is s'. For given $\epsilon > 0$, let $N = \frac{1}{\epsilon}$. Then for n > N, $|s' x_n| = s' x_n < \frac{1}{n} < \epsilon$. Since ϵ was arbitrary, we are done.
- (10.10) Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - (a) We compute $s_2 = \frac{2}{3}$, $s_3 = \frac{5}{9}$, and $s_4 = \frac{14}{27}$.

(b) We claim that $s_n > \frac{1}{2}$ for all n. Since $s_1 = 1$, the claim is true in the base case n = 1. Now let us assume the claim is true for n and try to show that it holds for n + 1. We have $s_{n+1} = \frac{1}{3}(s_n + 1) < \frac{1}{3}(\frac{1}{2} + 1) = \frac{1}{3}(\frac{3}{2}) = \frac{1}{2}$. Ergo if the claim is true for n, it is true for n+1. Therefore the inductive step is true and we are done.

(c) We claim (s_n) is decreasing. It suffices to show that $s_{n+1}-s_n$ is in general a negative number. We compute $s_{n+1}-s_n = \frac{1}{3}(s_n+1)-s_n = \frac{1}{3}-\frac{2}{3}(s_n) < \frac{1}{3}-\frac{2}{3}(\frac{1}{2}) = 0$. Here the third step follows from part (b), i.e. $s_n < \frac{1}{2}$ for all n. Ergo $s_{n+1}-s_n < 0$ for all n, so $s_{n+1} < s_n$ for all n, and s_n is decreasing.

(d) Because (s_n) is decreasing and bounded below, (s_n) must converge to some limit s. Therefore we can take the limit of both sides of the relationship $s_{n+1} = \frac{1}{3}(s_n + 1)$ using the limit laws, obtaining $s = \frac{1}{3}(s + 1)$. Therefore, $\frac{2}{3}s = \frac{1}{3}$, so $s = \frac{1}{2}$.

3. (a) By exercise (8.9) in Ross, if (s_n) is a convergent sequence of elements of [a, b], then $\lim s_n$ is also in [a, b]. Ergo [a, b] is closed.

(b) One example of a closed unbounded subset of \mathbb{R} is \mathbb{Z} ; the only sequences in \mathbb{Z} which have limits are those sequences which are eventually constant.

(c) Let S be closed and bounded above. By exercise (10.7), there is a sequence of points (s_n) in S such that $\lim s_n = \sup S$. Therefore since S is closed, $\sup S \in S$. Therefore S has a maximum.

4. (a) Since $s_{n+1} - s_n = \frac{1}{2^{n+1}} > 0$, (s_n) is increasing. We note that $2^n s_n = 2^n + 2^{n-1} + \cdots + 2 + 1 = 2^{n+1} - 1$, so in fact $s_n = 2 - \frac{1}{2^n} < 2$, and (s_n) is bounded. (Later we will introduce a general formula for this sort of computation.)

(b) Since (s_n) is monotone bounded, it converges to some limit s, so we can take the limit of both sides of $s_{n+1} = \frac{1}{2}s_n + 1$ to obtain $s = \frac{s}{2} + 1$, implying that s = 2.

(c) This sequence diverges, so the limit laws do not apply!