Homework 3 Solutions

MTH 320

- (4.7) (a) Let S, T nonempty subsets of \mathbb{R} with $S \subset T$. Then we claim $\inf T \leq \inf S \leq$ $\sup (S) \leq \sup (T)$. Proof: For any $s \in S$, since $s \in T, s \geq \inf T$. Therefore $\inf (T)$ is a lower bound for S, so by definition $\inf T \leq \inf S$. If T is not bounded below, $\inf T$ is $-\infty$, and therefore $\inf T \leq \inf S$ in any case. Similarly, $\sup S \leq \sup T$. So, since we know $\inf (S) \leq \sup (S)$ in general, we obtain the desired chain of inequalities.
(b) Let $y=\max \{\sup S, \sup T\}$. Without loss of generality, we can assume this maximum is $\sup S$ (if it is not, we can switch which set is S and which is T). Suppose $a \in S \cup T$, then either $a \in S$ and $a \leq \sup S$, or $a \in T$ and $a \leq \sup T$. In either case, $a \leq y=\max \{\sup S, \sup T\}$, so y is an upper bound for $S \cup T$. Now suppose z is another lower bound for $S \cup T$, and $z<y=\sup S$. Then if $a \in S, a \in S \cup T$, so $a \leq z$. Therefore z is an upper bound for S that is less than $y=\sup S$. And this is nonsense. Therefore there is no such z, and y is the supremum of $S \cup T$.
- (4.11) We claim the interval (a, b) contains infinitely many rationals. Proof: By the density lemma proved in class, (a, b) contains a rational q_{1}. But then the interval (a, q_{1}) also contains a rational, call it q_{2}, which is different from q_{1} and lies in (a, b). And the inteval $\left(a, q_{2}\right)$ contains a third rational, q_{3}, which is different from q_{1} and q_{2} and lies in (a, b). Iterating this process gives an infinite set of rationals $q_{1}, q_{2}, q_{3} \cdots$ in (a, b).
- (4.12) We claim the interval (a, b) contains an irrational. Proof: The interval ($a-$ $\sqrt{2}, b-\sqrt{2}$) contains a rational, call it r. Then (a, b) contains $r+\sqrt{2}$, which must be irrational. For if $r+\sqrt{2}$ is rational, then $(r+\sqrt{2})+(-r)=\sqrt{2}$ is the sum of two rationals and therefore rational, which is nonsense.
- (4.14) Let A and B be nonempty bounded subsets of \mathbb{R}, and let $A+B$ be the set of all sums $a+b$ where $a \in A$ and $\underline{i} n B$.
(a) We want to $\operatorname{show} \sup (A+B)=\sup (A)+\sup (B)$. By definition, if $a \in A$, then $a \leq \sup _{A}$, and if $b \in B, b \leq \sup _{B}$. Ergo if $a+b \in A+B$, we have $a+b \leq \sup _{A}+\sup _{B}$. Therefore $\sup _{A}+\sup _{B}$ is an upper bound for $A+B$, $\operatorname{sog}_{A+B} \leq \sup _{A}=\sup _{B}$. Now, let b^{\prime} be any element of B. For any $a \in A, a+b^{\prime} \leq \sup (A+B)$, so $a \leq \sup (A+B)-b^{\prime}$. Ergo since a was any element of $A, \sup (A+B)-b^{\prime}$ is an upper bound for A. Therefore $\sup A \leq \sup (A+B)-b^{\prime}$. Rearranging, we see that $b^{\prime} \leq \sup (A+B)-\sup A$. Hence since b^{\prime} was an arbitrary element of $B, \sup (A+B)-\sup A$ is an upper bound for B, implying that $\sup B \leq \sup (A+B)-\sup A$. Ergo $\sup A+\sup B \leq \sup (A+B)$. We conclude that $\sup A+\sup B=\sup (A+B)$.
- (8.1)(b). We claim that $\lim \frac{1}{n^{\frac{1}{3}}}=0$. Proof: Given $\epsilon>0$, let $N=\frac{1}{(\epsilon)^{3}}$. Then for all $n \geq N$, we have $n \geq \frac{1}{(\epsilon)^{3}}$, which implies $\frac{1}{n} \leq \epsilon^{3}$, which in turn implies that $\frac{1}{n^{\frac{1}{3}}} \leq \epsilon$. Therefore $\left|\frac{1}{n^{\frac{1}{3}}}-0\right|=\frac{1}{n^{\frac{1}{3}}}<\epsilon$ whenever $n \geq N$, so we are done.
- 8.2 (d) We claim that the limit of the sequence $d_{n}=\frac{2 n+4}{5 n+2}$ is $\frac{2}{5}$. Proof: Given $\epsilon>0$, let $N=\frac{1}{5}\left(\frac{16}{5 \epsilon}-2\right)$. Then for all $n \geq N$, we have $n \geq \frac{1}{5}\left(\frac{16}{5 \epsilon}-2\right)$, implying that $5 n+2 \geq \frac{16}{5 \epsilon}$. Therefore for each $n \geq N$, we have $\epsilon \geq \frac{16}{5(5 n+2}=\left|\frac{16}{5(5 n+2)}\right|=\left|\frac{(10 n+20)-(10 n+4)}{5(5 n+2)}\right|=$ $\left|\frac{2 n+4}{5 n+2}-\frac{2}{5}\right|$.
- 8.2 (e) We claim that the limit of the sequence $s_{n}=\frac{1}{n} \sin n$ is 0 . Proof: Observe that $\left|s_{n}-0\right|=\left|\frac{1}{n} \sin n\right| \leq \frac{1}{n}$. Now, given $\epsilon>0$, choose N such that $\frac{1}{N}<\epsilon$. Then for $n>N$, $\left|s_{n}-0\right| \leq \frac{1}{n}<\frac{1}{N}<\epsilon$.
- (8.3) Let s_{n} be a sequence of nonnegative reals with limit zero. Given $\epsilon>0$, we can choose N such that $n>N$ implies that $\left|s_{n}-0\right|<\epsilon^{2}$, or equivalently $s_{n}<\epsilon^{2}$. Then for $n>N$, we have $\left|\sqrt{s_{n}}-0\right|=\sqrt{s_{n}}<\epsilon$. So $\sqrt{s_{n}} \rightarrow 0$.
- (8.5) (a) By assumption, $a_{n} \leq s_{n} \leq b_{n}$ for all n. Subtracting s gives $a_{n}-s \leq s_{n}-s \leq$ $b_{n}-s$. Therefore $\left|s_{n}-s\right| \leq \max \left(\left|a_{n}-s\right|,\left|b_{n}-s\right|\right)$. Now since $\lim a_{n}=s$, there exists N_{1} such that $n>N_{1}$ implies $\left|a_{n}-s\right| \leq \epsilon$, and similarly since $\lim b_{n}=s$, there exists N_{2} such that $n>N_{2}$ implies $\left|b_{n}-s\right| \leq \epsilon$. Therefore for any $n \geq \max \left\{N_{1}, N_{2}\right\}$, we have $\left|s_{n}-s\right| \leq \max \left(\left|a_{n}-s\right|,\left|b_{n}-s\right|\right)<\epsilon$. Ergo $\lim s_{n}=s$.
(b) Observe that $-t_{n} \leq s_{n} \leq t_{n}$ for all n. We know $\lim t_{n}=0$; moreover, we claim that $\lim \left(-t_{n}\right)=0$. For, given $\epsilon>0$, by assumption we can choose N such that $n>N$ implies $\left|t_{n}-0\right|=\left|t_{n}\right|<\epsilon$, so in fact $\left|-t_{n}-0\right|=\left|t_{n}\right|<\epsilon$. So since zero is the limit of $\left(t_{n}\right)$ and $\left(-t_{n}\right)$, by the squeeze theorem $\lim s_{n}=0$ as well.
- (8.9) (a) Suppose $s_{n} \geq a$ for all but finitely many n. Then there is some N_{1} such that $n \geq N_{1}$ implies that $s_{n} \geq a$. Now suppose, for the sake of producing a contradiction, that $\lim s_{n}=s$ for some number $s<a$. Then let $\epsilon=s-a$. By assumption, there exists some N_{2} such that $n \geq N_{2}$ implies $\left|s_{n}-s\right|<\epsilon$. Let $n \geq \max \left(N_{1}, N_{2}\right)$. Then for $n \geq N$, we have $s_{n} \geq a>s$, so $\left(s_{n}-s\right)=\left(s_{n}-a\right)+(a-s) \geq a-s=\epsilon$. So in fact $\left|s_{n}-s\right| \geq \epsilon$, a contradiction. Therefore $\lim s_{n} \geq a$.
(b) Extremely similar.
(c)Follows immediately.
- (9.1) (b) Observe that $\frac{3 n+7}{6 n-5}=\frac{3+\frac{7}{n}}{6-\frac{5}{n}}$. Now, $\left(\frac{1}{n}\right)$ converges to 0 , so by Theorem $9.2, \frac{7}{n} \rightarrow 0$. Similarly $\frac{5}{n} \rightarrow 0$. Now, (3) converges to 3 , so by Theorem $9.3,3+\frac{7}{n} \rightarrow 3+0=3$. Similarly $6-\frac{5}{n} \rightarrow 6$. Since $6-\frac{5}{n} \neq 0$ for all n and $6 \neq 0$, Theorem 9.6 implies that $\frac{3+\frac{7}{n}}{6-\frac{5}{n}} \rightarrow \frac{3}{6}=\frac{1}{2}$.
- (9.3) Suppose $\lim a_{n}=a, \lim b_{n}=b$. Then since $\lim a_{n}$ exists, by Theorem 9.4,
 Therefore by Theorem $9.3, \lim \left(a_{n}^{3}+4 a_{n}\right)=\lim a_{n}^{3}+\lim 4 a_{n}=a^{3}+4 a$. Similarly, $\lim b_{n}^{2}+1=b^{2}+1$, and since $b^{2} \geq 0$, we know $b^{2}+1>0$. Ergo we may apply Theorem 9.6 to conclude that $\lim \frac{a_{n}^{3}+4 a_{n}}{b_{n}^{2}+1}=\frac{\lim \left(a_{n}^{3}+4 a_{n}\right)}{\lim \left(b_{n}^{2}+1\right)}=\frac{a^{3}+4 a}{b^{2}+1}$.

