Homework 3 Solutions
MTH 320

e (4.7) (a) Let S, T nonempty subsets of R with S C 7. Then we claim inf7" < infS <
sup(S) < sup(T’). Proof: For any s € S, since s € T', s > infT". Therefore inf(T) is
a lower bound for S, so by definition inf7" < infS. If T" is not bounded below, infT
is —oo, and therefore inf7" < infS in any case. Similarly, supS < sup7’. So, since we
know inf(S) < sup(9S) in general, we obtain the desired chain of inequalities.

(b) Let y = max{sup S,supT'}. Without loss of generality, we can assume this max-
imum is sup S (if it is not, we can switch which set is S and which is T"). Suppose
a € SUT, then either a € S and a < sup S, or a € T and a < supT. In either
case, a < y = max{sup S,sup T}, so y is an upper bound for S UT. Now suppose z
is another lower bound for SUT, and z < y = supS. Then ifa € S, a € SUT, so
a < z. Therefore z is an upper bound for S that is less than y = sup.S. And this is
nonsense. Therefore there is no such z, and y is the supremum of SUT.

e (4.11) We claim the interval (a,b) contains infinitely many rationals. Proof: By the
density lemma proved in class, (a,b) contains a rational ¢;. But then the interval (a, ¢;)
also contains a rational, call it g9, which is different from ¢; and lies in (a,b). And the
inteval (a, ¢2) contains a third rational, g3, which is different from ¢; and g3 and lies in
(a,b). Iterating this process gives an infinite set of rationals ¢, ga, g3 - -+ in (a,b).

e (4.12) We claim the interval (a,b) contains an irrational. Proof: The interval (a —
V/2,b — /2) contains a rational, call it . Then (a,b) contains r 4 v/2, which must be
irrational. For if r 4+ /2 is rational, then (r 4+ v/2) 4+ (=r) = /2 is the sum of two
rationals and therefore rational, which is nonsense.

e (4.14) Let A and B be nonempty bounded subsets of R, and let A + B be the set of
all sums a + b where a € A and inB.

(a) We want to show sup(A + B) = sup(A) + sup(B). By definition, if a € A, then
a <supy, and if b € B, b < supg. Ergoif a+b e A+ B, we have a+b < sup, +supg.
Therefore sup 4, + supy is an upper bound for A+ B, so sup,, 5 < sup, = supg. Now,
let O’ be any element of B. For any a € A, a+b' < sup(A+ B), soa < sup(A+B) -0
Ergo since a was any element of A, sup(A+ B)—1¥ is an upper bound for A. Therefore
supA < sup(A + B) — V. Rearranging, we see that 0’ < sup(A + B) — supA. Hence
since b’ was an arbitrary element of B, sup(A + B) — supA is an upper bound for B,
implying that supB < sup(A + B) — supA. Ergo supA + supB < sup(A4 + B). We
conclude that supA + supB = sup(A + B).



(8.1)(b). We claim that lim - = 0. Proof: Given ¢ > 0, let N = # Then for all
n3

n > N, we have n > -5, which implies 1 = < €2, which in turn implies that 4 < e.
n3

(€
Therefore ]— — 0] = % < e whenever n > N, so we are done.
n3

8.2 (d) We claim that the limit of the sequence d,, = gZig is £. Proof: Given € > 0, let

N =1(£—-2). Thenforalln > N, wehaven > § (£ — ) 1mply1ng that 5n+2 > 2.
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Therefore for each n > N, we have € > zz00 = |5(5n+2)| = | D) | =
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8.2 (e) We claim that the limit of the sequence s, = L sinn is 0. Proof: Observe that
s, —0] = | sinn| < L. Now, given € > 0, choose N such that & < e. Then for n > N,
s, —0] <+ < & <e

(8.3) Let s, be a sequence of nonnegative reals with limit zero. Given e > 0, we can
choose N such that n > N implies that |s, — 0| < €, or equivalently s,, < €. Then

for n > N, we have |\/s, — 0| = /5, <. SO\/5—>O.

(8.5) (a) By assumption, a,, < s, < b, for all n. Subtracting s gives a,, —s < s, —s <
b, — s. Therefore |s, — s| < max(|a, — s|, |b, — s|). Now since lim a,, = s, there exists
N; such that n > Nj implies |a, — s| < ¢, and similarly since limb,, = s, there exists
Ny such that n > Ny implies |b, — s| < e. Therefore for any n > max{Ny, N}, we
have |s,, — s| < max(|a,, — s|, b, — s|) < e. Ergo lims,, = s.

(b) Observe that —t, < s, < t, for all n. We know limt, = 0; moreover, we claim
that lim(—t,) = 0. For, given € > 0, by assumption we can choose N such that n > N
implies |¢,, — 0| = |t,| < €, so in fact | — ¢, — 0] = |t,| < €. So since zero is the limit of
(t,) and (—t,), by the squeeze theorem lims,, = 0 as well.

(8.9) (a) Suppose s,, > a for all but finitely many n. Then there is some N; such that
n > Np implies that s, > a. Now suppose, for the sake of producing a contradiction,
that lim s, = s for some number s < a. Then let € = s — a. By assumption, there
exists some Ny such that n > N, implies |s,, — s| < €. Let n > max(Ny, Na). Then for
n > N, we have s, > a > s,50 (8, —5) = (s, —a)+ (a—s) > a—s =e Soin fact
|sn, — s| > €, a contradiction. Therefore lim s,, > a.

(b) Extremely similar.
(c)Follows immediately.

, () converges to 0, so by Theorem 9.2, T — 0.

(9.1) (b) Observe that 3%+ = -t

Similarly 2 — 0. Now, (3) converges to 3, so by Theorem 9.3, 3+ I — 3+ () = 3.

Similarly 6 — % — 6. Since 6 — % # 0 for all n and 6 # 0, Theorem 9.6 implies that
3+; 1
=k —+3=2



lima? = (lima,)(lima,)(lima,) = a3, and by Theorem 9.2, lim4a,, = 4lima,, = 4a.

Therefore by Theorem 9.3, lim(a3 + 4a,,) = lima? + lim4a, = a® + 4a. Similarly,

limb2 +1 = b? + 1, and since b* > 0, we know b*+1 > 0. Ergo we may apply Theorem
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9.6 to conclude that lim 24T — Tm(24D) — 1

e (9.3) Suppose lim a, = a, limb, = b. Then since lima, exists, by Theorem 9.4,




