
Homework 3 Solutions

MTH 320

• (4.7) (a) Let S, T nonempty subsets of R with S ⊂ T . Then we claim infT ≤ infS ≤
sup(S) ≤ sup(T ). Proof: For any s ∈ S, since s ∈ T , s ≥ infT . Therefore inf(T ) is
a lower bound for S, so by definition infT ≤ infS. If T is not bounded below, infT
is −∞, and therefore infT ≤ infS in any case. Similarly, supS ≤ supT . So, since we
know inf(S) ≤ sup(S) in general, we obtain the desired chain of inequalities.

(b) Let y = max{supS, supT}. Without loss of generality, we can assume this max-
imum is supS (if it is not, we can switch which set is S and which is T ). Suppose
a ∈ S ∪ T , then either a ∈ S and a ≤ supS, or a ∈ T and a ≤ supT . In either
case, a ≤ y = max{supS, supT}, so y is an upper bound for S ∪ T . Now suppose z
is another lower bound for S ∪ T , and z < y = supS. Then if a ∈ S, a ∈ S ∪ T , so
a ≤ z. Therefore z is an upper bound for S that is less than y = supS. And this is
nonsense. Therefore there is no such z, and y is the supremum of S ∪ T .

• (4.11) We claim the interval (a, b) contains infinitely many rationals. Proof: By the
density lemma proved in class, (a, b) contains a rational q1. But then the interval (a, q1)
also contains a rational, call it q2, which is different from q1 and lies in (a, b). And the
inteval (a, q2) contains a third rational, q3, which is different from q1 and q2 and lies in
(a, b). Iterating this process gives an infinite set of rationals q1, q2, q3 · · · in (a, b).

• (4.12) We claim the interval (a, b) contains an irrational. Proof: The interval (a −√
2, b−

√
2) contains a rational, call it r. Then (a, b) contains r +

√
2, which must be

irrational. For if r +
√

2 is rational, then (r +
√

2) + (−r) =
√

2 is the sum of two
rationals and therefore rational, which is nonsense.

• (4.14) Let A and B be nonempty bounded subsets of R, and let A + B be the set of
all sums a+ b where a ∈ A and i

¯
nB.

(a) We want to show sup(A + B) = sup(A) + sup(B). By definition, if a ∈ A, then
a ≤ supA, and if b ∈ B, b ≤ supB. Ergo if a+ b ∈ A+B, we have a+ b ≤ supA + supB.
Therefore supA + supB is an upper bound for A+B, so supA+B ≤ supA = supB. Now,
let b′ be any element of B. For any a ∈ A, a+ b′ ≤ sup(A+B), so a ≤ sup(A+B)− b′.
Ergo since a was any element of A, sup(A+B)−b′ is an upper bound for A. Therefore
supA ≤ sup(A + B) − b′. Rearranging, we see that b′ ≤ sup(A + B) − supA. Hence
since b′ was an arbitrary element of B, sup(A + B) − supA is an upper bound for B,
implying that supB ≤ sup(A + B) − supA. Ergo supA + supB ≤ sup(A + B). We
conclude that supA+ supB = sup(A+B).



• (8.1)(b). We claim that lim 1

n
1
3

= 0. Proof: Given ε > 0, let N = 1
(ε)3

. Then for all

n ≥ N , we have n ≥ 1
(ε)3

, which implies 1
n
≤ ε3, which in turn implies that 1

n
1
3
≤ ε.

Therefore | 1

n
1
3
− 0| = 1

n
1
3
< ε whenever n ≥ N , so we are done.

• 8.2 (d) We claim that the limit of the sequence dn = 2n+4
5n+2

is 2
5
. Proof: Given ε > 0, let

N = 1
5

(
16
5ε
− 2

)
. Then for all n ≥ N , we have n ≥ 1

5

(
16
5ε
− 2

)
, implying that 5n+2 ≥ 16

5ε
.

Therefore for each n ≥ N , we have ε ≥ 16
5(5n+2

= | 16
5(5n+2)

| = | (10n+20)−(10n+4)
5(5n+2)

| =

|2n+4
5n+2

− 2
5
|.

• 8.2 (e) We claim that the limit of the sequence sn = 1
n

sinn is 0. Proof: Observe that
|sn−0| = | 1

n
sinn| ≤ 1

n
. Now, given ε > 0, choose N such that 1

N
< ε. Then for n > N ,

|sn − 0| ≤ 1
n
< 1

N
< ε.

• (8.3) Let sn be a sequence of nonnegative reals with limit zero. Given ε > 0, we can
choose N such that n > N implies that |sn − 0| < ε2, or equivalently sn < ε2. Then
for n > N , we have |√sn − 0| = √sn < ε. So

√
sn → 0.

• (8.5) (a) By assumption, an ≤ sn ≤ bn for all n. Subtracting s gives an− s ≤ sn− s ≤
bn − s. Therefore |sn − s| ≤ max(|an − s|, |bn − s|). Now since lim an = s, there exists
N1 such that n > N1 implies |an − s| ≤ ε, and similarly since lim bn = s, there exists
N2 such that n > N2 implies |bn − s| ≤ ε. Therefore for any n ≥ max{N1, N2}, we
have |sn − s| ≤ max(|an − s|, |bn − s|) < ε. Ergo lim sn = s.

(b) Observe that −tn ≤ sn ≤ tn for all n. We know lim tn = 0; moreover, we claim
that lim(−tn) = 0. For, given ε > 0, by assumption we can choose N such that n > N
implies |tn − 0| = |tn| < ε, so in fact | − tn − 0| = |tn| < ε. So since zero is the limit of
(tn) and (−tn), by the squeeze theorem lim sn = 0 as well.

• (8.9) (a) Suppose sn ≥ a for all but finitely many n. Then there is some N1 such that
n ≥ N1 implies that sn ≥ a. Now suppose, for the sake of producing a contradiction,
that lim sn = s for some number s < a. Then let ε = s − a. By assumption, there
exists some N2 such that n ≥ N2 implies |sn − s| < ε. Let n ≥ max(N1, N2). Then for
n ≥ N , we have sn ≥ a > s, so (sn − s) = (sn − a) + (a − s) ≥ a − s = ε. So in fact
|sn − s| ≥ ε, a contradiction. Therefore lim sn ≥ a.

(b) Extremely similar.

(c)Follows immediately.

• (9.1) (b) Observe that 3n+7
6n−5 =

3+ 7
n

6− 5
n

. Now, ( 1
n
) converges to 0, so by Theorem 9.2, 7

n
→ 0.

Similarly 5
n
→ 0. Now, (3) converges to 3, so by Theorem 9.3, 3 + 7

n
→ 3 + 0 = 3.

Similarly 6 − 5
n
→ 6. Since 6 − 5

n
6= 0 for all n and 6 6= 0, Theorem 9.6 implies that

3+ 7
n

6− 5
n

→ 3
6

= 1
2
.



• (9.3) Suppose lim an = a, lim bn = b. Then since lim an exists, by Theorem 9.4,

lim a3n = (lim an)(̇ lim an)(̇ lim an) = a3, and by Theorem 9.2, lim 4an = 4 lim an = 4a.
Therefore by Theorem 9.3, lim(a3n + 4an) = lim a3n + lim 4an = a3 + 4a. Similarly,
lim b2n + 1 = b2 + 1, and since b2 ≥ 0, we know b2 + 1 > 0. Ergo we may apply Theorem

9.6 to conclude that lim a3n+4an
b2n+1

= lim(a3n+4an)
lim(b2n+1)

= a3+4a
b2+1

.


