Homework 2 Solutions

MTH 320

3. Problems from Ross.

e (3.4)(a) Claim: In an ordered field, 0 < 1. Proof: Observe that 1 =1x1 = (1)? is
always a square element of the field. By part (iv) of Theorem 3.2, all squares are
greater than or equal to zero in an ordered field, so 0 < 1. Moreover, we know that
0 # 1 in any field (in particular, if 0 = 1 then for any a € F', 0 = a(0) = a(l) = a
foralla € F). So 0 < 1.

(b) Claim: If 0 < @ < b, then 0 < b~ < a™'. Proof: By part (vi), we know that
if a,b > 0 then a=!,b~! > 0, so it remains to establish the relationship of a~! and
b~1. Suppose that 0 < a < b, but b=! > a~!. Then since b > 0, b(b~*) > ba™",
so 1 > ba~t. But b > a, so we see that ba™! > aa~' = 1. This implies 1 > 1, a
contradiction.

e (3.7) (a) Claim: |b| < a if and only if —a < b < a. Proof: First, suppose |b| < a.
Then a is positive. If b > 0, —a < 0 < b, whereas if b < 0, —b = |b| < a, so by
Theorem 3.2(i), b > —a. Ergo in either case —a < b < a. Conversely, suppose
—a < b < a. Then if b is positive, |b| = b < a, whereas if b is negative, |b| = —b,
so since —a < b, by Theorem 3.2(i), a > —b = |b|.

(b) Claim: |a — b| < ¢ if and only if b — ¢ < a < b+ ¢. Proof: First, observe that
by the fourth axiom O4 for an ordered field b — ¢ < a < b+ ¢ is equivalent to
—c < a—b < c. We may then apply part (a) to obtain the result.

(c) Very similar to the above.

e (3.8) Claim: Let a,b € R. Then if a < by for every b; > b, then a < b. Proof:
Suppose not. Then a > b. Let by = “Ter Then a > by > b, but by the hypotheses

of the claim, since b; > b, a < b;. Contradiction.

4. Problems (4.1 — 4.4) in Ross for (a), (b), (r), (m), and (w).

Here are the supremum and infimum of each set; for each set any three numbers greater
than or equal to the supremum will do for upper bounds, and similarly for the infimum
and lower bounds.

(a) The supremum of [0,1] is 1 and the infimum is 0.



(b) The supremum of (0,1) is 1 and the infimum is 0.

(r) Observe that N2, (1 — £,1 4 1) = 1. Therefore the supremum and infimum of
S are each 1.

(m) The supremum of {r € Q : r* < 4} is 2, and the infimum is —2.

(w) Observe that {sin (%) : n € N} = {\/7§’ —‘/73,0}. Therefore this is a finite set;

the supremum (and maximum) is */73 and the infimum (and minimum) is —‘/7?:.

. (a) Suppose there are two additive identity elements in F', 0 and 0/, such that for all
a € F,a+0 = a and a+0" = a. Then setting a = 0/ in the first equation gives 0'+0 = 0,
but setting @ = 0/ in the second equation gives 0+0" = 0". Ergo 0 =040 =0+0 =0,
where we have used the commutativity of addition in a field.

Now suppose some element a of F' has two additive inverses, —a and —a’, such that
a+—a=0and a+—a =0. Then —a=—-a+0=—a+(a+—d) =(—a+a)+—d =
0+ —a = —d/, so in fact —a = —a’. (We could have also used Theorem 3.1(a) to
cancel a from a + —a = a + —d’.)

(b) Extremely similarly for multiplication.

. (a)First, C is clearly closed under addition and multiplication. We check the field ax-
ioms for C. Let a + bi,c+ di,e 4+ fi be three elements of C.

(A1) We see that

(a+bi)+ (c+di+e+ fi)=a+bi+[(c+e)+ (d+ f)i
[a+ (c+e)]+[b+(d+ [l
[(a+c)+el+[(b+d)+ fli
[(a+c)+ (b+d)i] + (e + [i)
[(a+bi) + (c+di)] + (e + fi).

So addition of complex numbers is associative.

(A2)We see that (a+bi)+(c+di) = (a+c)+(b+d)i = (c+a)+(d+b)i = (c+di)+(a+bi),

so addition of complex numbers is commutative since addition of real numbers is.

(A3) The additive identity element is 0 + 0i; observe that a + bi + 0+ 0i = (a +
0)+ (b+0)i = a+ bi.

(A4) The additive inverse of any element a + bi is (—a) + (—b)i; observe that (a +
bi) + ((—a) + (=b)i) = (a + —a) + (b + —b)i = 0 + 0i.



(M1) We see that

(a4 bi)[(c+di)(e+ fi)] = (a+ bi)[(ce — df) + (cf + de)i]
= [a(ce — df) — b(cf + de)] + [a(cf + de) + b(ce — df)]i
= (ace — adf — bcf — bde) + (acf + ade + bee — bdf )i
= [(ac — bd)e — (ad + bc) f] + [(ad + be)e + (ac — bd) fli
= [(ac — bd) + (ad + be)il(e + fi)
= [(a + bi)(c + di)](e + fi).

Ergo multiplication of complex numbers is associative. Observe that we have used as-
sociativity, commutativity, and the distributive law for real numbers in this argument.

(M2)We see that (a + bi)(c + di) = (ac — bd) + (ad + be)i = (ca — db) + (da + cb)i =
(¢ + di)(a + bi), so multiplication of complex numbers is commutative.

(M3) The multiplicative identity element is (1 + 0z); observe that for any a + bi,
we have (a + bi)(1+ 0i) = (a(1) — b(0)) + (a(0) + b(1))i = a + bi.

(M4) The multiplicative inverse of any element a + bi is ——=1; observe that

(a+0i) (e — aried) = e + i = 1+ 00

_a __ _b
a?+b2 a?+b

a?+b2
(DL) We see that

(a+bi)[(c+di) + (e + fi)] = (a+bi)[(c+ e)i + (d + f)i]
=lalc+e) =bd+ f)] + [a(d+ f) + b(c+e)i
= (ac+ ae —bd — bf) + (ad + af + be + be)i
[(ac — bd) + (ad + bc)i] + [(ae — bf) + (af + be)i]
= (a +bi)(c+ di) + (a + bi)(e + di).

So multiplication of complex numbers distributes over addition.

(b) Suppose < is an order relation on C. Then by Theorem (3.2)(v), 1 > 0. Therefore,
since —1 is the additive inverse of 1, —1 < 0, by Theorem 3.2(i). However, by Theorem
3.2 (v), all squares in an ordered field are nonnegative, so i> = —1 > 0. This is a
contradiction, as an element cannot be both less than zero and greater than or equal
to zero.

. Say that A = {ay,a9,as,---} and B = {by, bs, b3, - - - }. Then we can mimic the proof in
class that Nx N is countable, using diagonals in the first quadrant of the plane to build a

list of elements of Ax B. Specifically, this list goes {(a1, b1), (a1, b2), (a2, b1), (a1, bs), (az, b2), (as, b1),- -

In more formal language, we already know there is a bijection between N x N and
N, so we can use the existing bijections A — N and B — N to get a bijection
AxB—-NxN-—=N.



8. Suppose for the sake of producing a contradiction that we can make a list {4, Ay, -+ }
of the subsets of N. We can associate to any A; of a binary sequence by letting a,;; = 1
if j isin A and a;; = 0 if j is not in A. But then if we set b; to be 0 if a;; = 1 and vice
versa, the subset B C N determined by by, by, - - - does not appear in our list of subsets
A;. Ergo there are uncountably many subsets of N.



