Homework 2 Solutions

MTH 320
3. Problems from Ross.

- (3.4)(a) Claim: In an ordered field, $0<1$. Proof: Observe that $1=1 \times 1=(1)^{2}$ is always a square element of the field. By part (iv) of Theorem 3.2, all squares are greater than or equal to zero in an ordered field, so $0 \leq 1$. Moreover, we know that $0 \neq 1$ in any field (in particular, if $0=1$ then for any $a \in F, 0=a(0)=a(1)=a$ for all $a \in F)$. So $0<1$.
(b) Claim: If $0<a<b$, then $0<b^{-1}<a^{-1}$. Proof: By part (vi), we know that if $a, b>0$ then $a^{-1}, b^{-1}>0$, so it remains to establish the relationship of a^{-1} and b^{-1}. Suppose that $0<a<b$, but $b^{-1} \geq a^{-1}$. Then since $b>0, b\left(b^{-1}\right) \geq b a^{-1}$, so $1>b a^{-1}$. But $b>a$, so we see that $b a^{-1}>a a^{-1}=1$. This implies $1>1$, a contradiction.
- (3.7) (a) Claim: $|b|<a$ if and only if $-a<b<a$. Proof: First, suppose $|b|<a$. Then a is positive. If $b \geq 0,-a<0<b$, whereas if $b<0,-b=|b|<a$, so by Theorem 3.2(i), $b>-a$. Ergo in either case $-a<b<a$. Conversely, suppose $-a<b<a$. Then if b is positive, $|b|=b<a$, whereas if b is negative, $|b|=-b$, so since $-a<b$, by Theorem 3.2(i), $a>-b=|b|$.
(b) Claim: $|a-b|<c$ if and only if $b-c<a<b+c$. Proof: First, observe that by the fourth axiom O 4 for an ordered field $b-c<a<b+c$ is equivalent to $-c<a-b<c$. We may then apply part (a) to obtain the result.
(c) Very similar to the above.
- (3.8) Claim: Let $a, b \in \mathbb{R}$. Then if $a \leq b_{1}$ for every $b_{1}>b$, then $a \leq b$. Proof: Suppose not. Then $a>b$. Let $b_{1}=\frac{a+b}{2}$. Then $a>b_{1}>b$, but by the hypotheses of the claim, since $b_{1}>b, a \leq b_{1}$. Contradiction.

4. Problems (4.1-4.4) in Ross for (a), (b), (r), (m), and (w).

Here are the supremum and infimum of each set; for each set any three numbers greater than or equal to the supremum will do for upper bounds, and similarly for the infimum and lower bounds.
(a) The supremum of $[0,1]$ is 1 and the infimum is 0 .
(b) The supremum of $(0,1)$ is 1 and the infimum is 0 .
(r) Observe that $\cap_{n=1}^{\infty}\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)=1$. Therefore the supremum and infimum of S are each 1.
(m) The supremum of $\left\{r \in \mathbb{Q}: r^{2}<4\right\}$ is 2 , and the infimum is -2 .
(w) Observe that $\left\{\sin \left(\frac{n \pi}{3}\right): n \in \mathbb{N}\right\}=\left\{\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}, 0\right\}$. Therefore this is a finite set; the supremum (and maximum) is $\frac{\sqrt{3}}{2}$ and the infimum (and minimum) is $-\frac{\sqrt{3}}{2}$.
5. (a) Suppose there are two additive identity elements in $F, 0$ and 0^{\prime}, such that for all $a \in F, a+0=a$ and $a+0^{\prime}=a$. Then setting $a=0^{\prime}$ in the first equation gives $0^{\prime}+0=0$, but setting $a=0^{\prime}$ in the second equation gives $0+0^{\prime}=0^{\prime}$. Ergo $0=0+0^{\prime}=0^{\prime}+0=0^{\prime}$, where we have used the commutativity of addition in a field.

Now suppose some element a of F has two additive inverses, $-a$ and $-a^{\prime}$, such that $a+-a=0$ and $a+-a^{\prime}=0$. Then $-a=-a+0=-a+\left(a+-a^{\prime}\right)=(-a+a)+-a^{\prime}=$ $0+-a^{\prime}=-a^{\prime}$, so in fact $-a=-a^{\prime}$. (We could have also used Theorem 3.1(a) to cancel a from $a+-a=a+-a^{\prime}$.)
(b) Extremely similarly for multiplication.
6. (a)First, \mathbb{C} is clearly closed under addition and multiplication. We check the field axioms for \mathbb{C}. Let $a+b i, c+d i, e+f i$ be three elements of \mathbb{C}.
(A1) We see that

$$
\begin{aligned}
(a+b i)+(c+d i+e+f i) & =a+b i+[(c+e)+(d+f) i] \\
& =[a+(c+e)]+[b+(d+f)] i \\
& =[(a+c)+e]+[(b+d)+f] i \\
& =[(a+c)+(b+d) i]+(e+f i) \\
& =[(a+b i)+(c+d i)]+(e+f i) .
\end{aligned}
$$

So addition of complex numbers is associative.
(A2)We see that $(a+b i)+(c+d i)=(a+c)+(b+d) i=(c+a)+(d+b) i=(c+d i)+(a+b i)$, so addition of complex numbers is commutative since addition of real numbers is.
(A3) The additive identity element is $0+0 i$; observe that $a+b i+0+0 i=(a+$ $0)+(b+0) i=a+b i$.
(A4) The additive inverse of any element $a+b i$ is $(-a)+(-b) i$; observe that $(a+$ $b i)+((-a)+(-b) i)=(a+-a)+(b+-b) i=0+0 i$.
(M1) We see that

$$
\begin{aligned}
(a+b i)[(c+d i)(e+f i)] & =(a+b i)[(c e-d f)+(c f+d e) i] \\
& =[a(c e-d f)-b(c f+d e)]+[a(c f+d e)+b(c e-d f)] i \\
& =(a c e-a d f-b c f-b d e)+(a c f+a d e+b c e-b d f) i \\
& =[(a c-b d) e-(a d+b c) f]+[(a d+b c) e+(a c-b d) f] i \\
& =[(a c-b d)+(a d+b c) i](e+f i) \\
& =[(a+b i)(c+d i)](e+f i) .
\end{aligned}
$$

Ergo multiplication of complex numbers is associative. Observe that we have used associativity, commutativity, and the distributive law for real numbers in this argument.
(M2)We see that $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i=(c a-d b)+(d a+c b) i=$ $(c+d i)(a+b i)$, so multiplication of complex numbers is commutative.
(M3) The multiplicative identity element is $(1+0 i)$; observe that for any $a+b i$, we have $(a+b i)(1+0 i)=(a(1)-b(0))+(a(0)+b(1)) i=a+b i$.
(M4) The multiplicative inverse of any element $a+b i$ is $\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}}$; observe that $(a+b i)\left(\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i\right)=\frac{a(a)-(b)(-b)}{a^{2}+b^{2}}+\frac{a b-a b}{a^{2}+b^{2}} i=1+0 i$.
(DL) We see that

$$
\begin{aligned}
(a+b i)[(c+d i)+(e+f i)] & =(a+b i)[(c+e) i+(d+f) i] \\
& =[a(c+e)-b(d+f)]+[a(d+f)+b(c+e)] i \\
& =(a c+a e-b d-b f)+(a d+a f+b c+b e) i \\
& =[(a c-b d)+(a d+b c) i]+[(a e-b f)+(a f+b e) i] \\
& =(a+b i)(c+d i)+(a+b i)(e+d i) .
\end{aligned}
$$

So multiplication of complex numbers distributes over addition.
(b) Suppose \leq is an order relation on \mathbb{C}. Then by Theorem (3.2)(v), $1>0$. Therefore, since -1 is the additive inverse of $1,-1<0$, by Theorem $3.2(\mathrm{i})$. However, by Theorem $3.2(\mathrm{v})$, all squares in an ordered field are nonnegative, so $i^{2}=-1 \geq 0$. This is a contradiction, as an element cannot be both less than zero and greater than or equal to zero.
7. Say that $A=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$. Then we can mimic the proof in class that $\mathbb{N} \times \mathbb{N}$ is countable, using diagonals in the first quadrant of the plane to build a list of elements of $A \times B$. Specifically, this list goes $\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{3}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{1}\right), \ldots\right.$ In more formal language, we already know there is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}, so we can use the existing bijections $A \rightarrow \mathbb{N}$ and $B \rightarrow \mathbb{N}$ to get a bijection $A \times B \rightarrow \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.
8. Suppose for the sake of producing a contradiction that we can make a list $\left\{A_{1}, A_{2}, \cdots\right\}$ of the subsets of \mathbb{N}. We can associate to any A_{i} of a binary sequence by letting $a_{i j}=1$ if j is in A and $a_{i j}=0$ if j is not in A. But then if we set b_{i} to be 0 if $a_{i i}=1$ and vice versa, the subset $B \subset \mathbb{N}$ determined by b_{1}, b_{2}, \cdots does not appear in our list of subsets A_{i}. Ergo there are uncountably many subsets of \mathbb{N}.

