
Homework 2 Solutions

MTH 320

3. Problems from Ross.

• (3.4)(a) Claim: In an ordered field, 0 < 1. Proof: Observe that 1 = 1×1 = (1)2 is
always a square element of the field. By part (iv) of Theorem 3.2, all squares are
greater than or equal to zero in an ordered field, so 0 ≤ 1. Moreover, we know that
0 6= 1 in any field (in particular, if 0 = 1 then for any a ∈ F , 0 = a(0) = a(1) = a
for all a ∈ F ). So 0 < 1.

(b) Claim: If 0 < a < b, then 0 < b−1 < a−1. Proof: By part (vi), we know that
if a, b > 0 then a−1, b−1 > 0, so it remains to establish the relationship of a−1 and
b−1. Suppose that 0 < a < b, but b−1 ≥ a−1. Then since b > 0, b(b−1) ≥ ba−1,
so 1 > ba−1. But b > a, so we see that ba−1 > aa−1 = 1. This implies 1 > 1, a
contradiction.

• (3.7) (a) Claim: |b| < a if and only if −a < b < a. Proof: First, suppose |b| < a.
Then a is positive. If b ≥ 0, −a < 0 < b, whereas if b < 0, −b = |b| < a, so by
Theorem 3.2(i), b > −a. Ergo in either case −a < b < a. Conversely, suppose
−a < b < a. Then if b is positive, |b| = b < a, whereas if b is negative, |b| = −b,
so since −a < b, by Theorem 3.2(i), a > −b = |b|.

(b) Claim: |a− b| < c if and only if b− c < a < b + c. Proof: First, observe that
by the fourth axiom O4 for an ordered field b − c < a < b + c is equivalent to
−c < a− b < c. We may then apply part (a) to obtain the result.

(c) Very similar to the above.

• (3.8) Claim: Let a, b ∈ R. Then if a ≤ b1 for every b1 > b, then a ≤ b. Proof:
Suppose not. Then a > b. Let b1 = a+b

2
. Then a > b1 > b, but by the hypotheses

of the claim, since b1 > b, a ≤ b1. Contradiction.

4. Problems (4.1 – 4.4) in Ross for (a), (b), (r), (m), and (w).

Here are the supremum and infimum of each set; for each set any three numbers greater
than or equal to the supremum will do for upper bounds, and similarly for the infimum
and lower bounds.

(a) The supremum of [0, 1] is 1 and the infimum is 0.



(b) The supremum of (0, 1) is 1 and the infimum is 0.

(r) Observe that ∩∞n=1(1 − 1
n
, 1 + 1

n
) = 1. Therefore the supremum and infimum of

S are each 1.

(m) The supremum of {r ∈ Q : r2 < 4} is 2, and the infimum is −2.

(w) Observe that {sin
(
nπ
3

)
: n ∈ N} = {

√
3
2
,−
√
3
2
, 0}. Therefore this is a finite set;

the supremum (and maximum) is
√
3
2

and the infimum (and minimum) is −
√
3
2

.

5. (a) Suppose there are two additive identity elements in F , 0 and 0′, such that for all
a ∈ F , a+0 = a and a+0′ = a. Then setting a = 0′ in the first equation gives 0′+0 = 0,
but setting a = 0′ in the second equation gives 0+0′ = 0′. Ergo 0 = 0+0′ = 0′+0 = 0′,
where we have used the commutativity of addition in a field.

Now suppose some element a of F has two additive inverses, −a and −a′, such that
a+−a = 0 and a+−a′ = 0. Then −a = −a+ 0 = −a+ (a+−a′) = (−a+ a) +−a′ =
0 + −a′ = −a′, so in fact −a = −a′. (We could have also used Theorem 3.1(a) to
cancel a from a +−a = a +−a′.)
(b) Extremely similarly for multiplication.

6. (a)First, C is clearly closed under addition and multiplication. We check the field ax-
ioms for C. Let a + bi, c + di, e + fi be three elements of C.

(A1) We see that

(a + bi) + (c + di + e + fi) = a + bi + [(c + e) + (d + f)i]

= [a + (c + e)] + [b + (d + f)]i

= [(a + c) + e] + [(b + d) + f ]i

= [(a + c) + (b + d)i] + (e + fi)

= [(a + bi) + (c + di)] + (e + fi).

So addition of complex numbers is associative.

(A2)We see that (a+bi)+(c+di) = (a+c)+(b+d)i = (c+a)+(d+b)i = (c+di)+(a+bi),
so addition of complex numbers is commutative since addition of real numbers is.

(A3) The additive identity element is 0 + 0i; observe that a + bi + 0 + 0i = (a +
0) + (b + 0)i = a + bi.

(A4) The additive inverse of any element a + bi is (−a) + (−b)i; observe that (a +
bi) + ((−a) + (−b)i) = (a +−a) + (b +−b)i = 0 + 0i.



(M1) We see that

(a + bi)[(c + di)(e + fi)] = (a + bi)[(ce− df) + (cf + de)i]

= [a(ce− df)− b(cf + de)] + [a(cf + de) + b(ce− df)]i

= (ace− adf − bcf − bde) + (acf + ade + bce− bdf)i

= [(ac− bd)e− (ad + bc)f ] + [(ad + bc)e + (ac− bd)f ]i

= [(ac− bd) + (ad + bc)i](e + fi)

= [(a + bi)(c + di)](e + fi).

Ergo multiplication of complex numbers is associative. Observe that we have used as-
sociativity, commutativity, and the distributive law for real numbers in this argument.

(M2)We see that (a + bi)(c + di) = (ac − bd) + (ad + bc)i = (ca − db) + (da + cb)i =
(c + di)(a + bi), so multiplication of complex numbers is commutative.

(M3) The multiplicative identity element is (1 + 0i); observe that for any a + bi,
we have (a + bi)(1 + 0i) = (a(1)− b(0)) + (a(0) + b(1))i = a + bi.

(M4) The multiplicative inverse of any element a + bi is a
a2+b2

− b
a2+b2

i; observe that

(a + bi)
(

a
a2+b2

− b
a2+b2

i
)

= a(a)−(b)(−b)
a2+b2

+ ab−ab
a2+b2

i = 1 + 0i.

(DL) We see that

(a + bi)[(c + di) + (e + fi)] = (a + bi)[(c + e)i + (d + f)i]

= [a(c + e)− b(d + f)] + [a(d + f) + b(c + e)]i

= (ac + ae− bd− bf) + (ad + af + bc + be)i

= [(ac− bd) + (ad + bc)i] + [(ae− bf) + (af + be)i]

= (a + bi)(c + di) + (a + bi)(e + di).

So multiplication of complex numbers distributes over addition.

(b) Suppose ≤ is an order relation on C. Then by Theorem (3.2)(v), 1 > 0. Therefore,
since −1 is the additive inverse of 1, −1 < 0, by Theorem 3.2(i). However, by Theorem
3.2 (v), all squares in an ordered field are nonnegative, so i2 = −1 ≥ 0. This is a
contradiction, as an element cannot be both less than zero and greater than or equal
to zero.

7. Say that A = {a1, a2, a3, · · · } and B = {b1, b2, b3, · · · }. Then we can mimic the proof in
class that N×N is countable, using diagonals in the first quadrant of the plane to build a
list of elements of A×B. Specifically, this list goes {(a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), (a3, b1), · · · }.
In more formal language, we already know there is a bijection between N × N and
N, so we can use the existing bijections A → N and B → N to get a bijection
A×B → N× N→ N.



8. Suppose for the sake of producing a contradiction that we can make a list {A1, A2, · · · }
of the subsets of N. We can associate to any Ai of a binary sequence by letting aij = 1
if j is in A and aij = 0 if j is not in A. But then if we set bi to be 0 if aii = 1 and vice
versa, the subset B ⊂ N determined by b1, b2, · · · does not appear in our list of subsets
Ai. Ergo there are uncountably many subsets of N.


