
Homework 1 Solutions
MTH 320

3. Problems from Ross.

• (1.4) (a) Let sn = 1+3+ · · ·+(2n−1) for all n ∈ N. We see that for n = 1, 2, 3, 4
we have sn = 1, 4, 9, 16 respectively. We therefore guess that sn = n2 in general.

(b) We proceed by induction. The base case s1 = 1 = 12 is true. Now let us
suppose that we already know sn = n2, and attempt to prove that sn+1 = (n+1)2.
We see that

sn+1 = 1 + 3 + · · ·+ (2(n + 1)− 1)

= sn + (2n + 1)

= n2 + (2n + 1)

= n2 + n + (n + 1)

= n(n + 1) + (n + 1)

= (n + 1)(n + 1)

= (n + 1)2.

Thus the inductive step is also proven, and the claim is true.

• (1.8)(a) We proceed by induction. Here the statement Pn is n2 > n+ 1. Our base
case is n = 2, so we check that P2 is true: 22 = 4 > 3 = 2 + 1. We now proceed to
the inductive step. Suppose that Pn is true, for some n ≥ 2. That is, we assume
n2 > n + 1. Then we have

(n + 1)2 = n(n + 1) + (n + 1)

= n2 + n + (n + 1)

> (n + 1) + n + (n + 1)

= 3n + 2

> n + 2.

Ergo if Pn is true, Pn+1 is true, so we are done.

(b) We proceed by induction. Here the statement Pn is n! > n2. Our base
case is n = 4, so we check P4 is true: 4! = 24 > 16 = 42. Now suppose Pn is true.
Then we have

(n + 1)! = (n + 1)× n× · · · × 1

= (n + 1)n!

> (n + 1)n2

> (n + 1)(n + 1)

= (n + 1)2.



Here we have used part (a), which tells us that for n ≥ 2, n2 > n + 1. Ergo for
n ≥ 4, if Pn is true, then Pn+1 is true. Thus the inductive step is proved, and the
claim is true.

• (1.11) (a) Suppose Pn is true. Then n2 + 5n + 1 is an even integer. To show that
Pn+1 is true, we consider the integer (n + 1)2 + 5(n + 1) + 1. We see that

(n + 1)2 + 5(n + 1) + 1 = n(n + 1) + (n + 1) + 5n + 5 + 1

= n2 + n + n + 1 + 5n + 6

= (n2 + 5n + 1) + 2n + 6.

Since 2n + 6 is an even number, and n2 + 5n + 1 is even by assumption, we see
that if Pn is true, then Pn+1 is also true.

(b) No n whatsoever. Observe that n2 + 5n + 1 = n(n + 5) + 1. Exactly one
of n and n+ 5 is even, so the product n(n+ 5) is even, and therefore n(n+ 5) + 1
is odd. The moral is that it is very important to check that a base case is true
when using induction.

4. We (again) proceed by induction. The base case P2 is n = 2, which is true since
(1+x)2 = 1+2x+x2 > 1+2x. Now assume that the nth case Pn is true, and consider
(1 + x)n+1 = (1 + x)(1 + x)n. Because 1 + x > 0 and (1 + x)n > 1 +nx by assumption,
we see that (1 + x)n+1 > (1 + x)(1 + nx) = 1 + (n + 1)x + nx2 > 1 + (n + 1)x, where
the last step follows because nx2 is a positive number. Therefore if Pn is true, Pn+1 is
also true, and the claim follows.

5. (2.2) We see that 2
1
3 is a root of f(x) = x3 − 2 = 0. According to the Rational

Zeroes Theorem, the only rational numbers which are solutions of f(x) = 0 are of the
form c

d
where c divides the constant term, −2 and d divides the leading coefficient,

1. Therefore the only possible rational zeroes of f(x) are ±1 and ±2, all of which are

clearly not 2
1
3 . We conclude that 2

1
3 cannot be a rational number. The other cases

proceed extremely similarly.

6. (2.3) We would like to find an polynomial with integer coefficients which has a =√
2 +
√

2 as a zero. We have a2 = 2 +
√

2; working backward from the quadratic
formula, we see that a2 is a zero of g(x) = x2 − 4x + 2. Hence a is a zero of
f(x) = g(x2) = x4 − 4x2 + 2. According to the Rational Zeroes Theorem, the only
rational numbers which could be solutions of f(x) = 0 are of the form c

d
where c di-

vides the constant term, 2 and d divides the leading coefficient, 1. Therefore the only
possible rational zeroes of f(x) are ±1 and ±2, all of which are clearly not a (and



indeed, not actually zeroes of f(x)). We conclude that a cannot be a rational number.

7. (a)The inductive step is flawed when n = 2. In particular, suppose we have a set
of two horses {x1, x2}. Then the set A1 = {x1} and A2 = {x2} have no overlap.
Therefore we cannot conclude that any two horses have the same color, and thus can-
not induct to larger sets of horses (even though the inductive step is valid for higher n).

(b) One correct answer is that this is not a good proof because we have failed to give
a definition of “interesting,” and indeed, seem to have changed whatever definition we
were using midway through the argument. This illustrates the importance of defining
mathematical terms carefully instead of relying upon their colloquial meanings.


