
Homework 12 Solutions
MTH 320

1. Problems from Ross.

2. (29.2) Recall that if f(x) = cos x, then f ′(x) = − sinx. Ergo since the cosine function
is continuous and differentiable everywhere on R, for any y < x ∈ R, by the Mean
Value Theorem there is some z ∈ (y, x) such that

cosx− cos y

x− y
= f ′(z) = − sin z

Taking the absolute value of both sides and multiplying by |x − y|, we see that
| cosx−cos y| = | sin z||x−y|. However, | sin z| ≤ 1 for any z, so in fact | cosx−cos y| ≤
|x− y|.

3. (29.3) (a) First, observe that since f differentiable on R, we have f continuous on R.
Ergo f is in particular continuous on [0, 2] and differentiable on (0, 2), so by MVT, we

see that there is some x in (0, 2) such that f ′(x) = f(2)−f(0)
2−0 = 1

2
.

(b) First observe that f is continuous on [1, 2] and differentiable on (1, 2), so by MVT

there is some y ∈ (1, 2) with the property that f ′(y) = f(2)−f(1)
2−1 = 0. But this means

there is some x in (0, 2) with f ′(x) = 1
2

from part (a) and some y ∈ (0, 2) with f ′(y) = 0.
Since derivatives of functions over intervals have the intermediate value property, we
see there is some z between x and y with f ′(z) = 1

7
.

4. (29.4) Let f and g be differentiable functions on an interval I, and let f(a) = f(b) = 0
for some a < b on I. Following the hint, we consider the function h(x) = f(x)eg(x).
Then h is continuous on [a, b] and differentiable on (a, b), and h(a) = 0 = h(b). More-
over, we see that in general h′(x) = f ′(x)eg(x) + f(x)g′(x)eg(x). Therefore by the Mean
Value Theorem, there is some z ∈ (a, b) such that

0 =
h(b)− h(a)

a− b
= f ′(z)eg(z) + f(z)g′(z)eg(z)

Ergo 0 = (f ′(x) + f(x)g′(x))eg(x). But since eg(x) 6= 0, in fact we have 0 = f ′(x) +
f(x)g′(x).

(29.5) Suppose |f(x)− f(y)| ≤ (x− y)2 for all x, y in R. Then for any given a ∈ R, we

have |f(x)−f(a)
x−a | ≤ |x− a|, so by the squeeze theorem, as x→ a, |f(x)−f(a)

x−a | → 0. There-
fore f ′(a) = 0. Since a was arbitrary, f ′(x) is identically zero on R, so by Corollary



29.4 f must be a constant function.

(29.9) Let f(x) = ex − ex. We claim this function is nonnegative everywhere. First,
observe that f(1) = 0. Now observe that f ′(x) = ex− e is positive on (1,∞) and nega-
tive on (−∞, 1), so f is decreasing on (−∞, 1] and increasing on [1,∞). In particular
f(1) = 0 is the minimum value taken by f . Ergo ex ≥ ex everywhere.

(29.13) Suppose f, g are differentiable, f(0) = g(0), and f ′(x) ≤ g′(x) on R. Consider
the function g − f(x). Observe that g − f(0) = 0, and (g − f)′(x) = g′(x)− f ′(x) ≥ 0
for x ≥ 0. Therefore g − f is an increasing function, so by Corollary 29.7 x ≥ 0,
g − f(x) ≥ g − f(0) = 0, or equivalently for x ≥ 0, g(x) ≥ f(x).

(29.16)Let x = g(y) = arctan y be the inverse of y = f(x) = tanx on (−π
2
, π
2
). By an

application of the quotient rule, we know f ′(x) = sec2(x) 6= 0 on (−π
2
, π
2
). Therefore

by Theorem 29.9, g′(y) = 1
sec2(x)

. It remains to turn this into an expression in y. Recall

that y = tanx, so drawing an appropriate right triangle shows that sec x = 1√
y2+1

.

Therefore g′(x) = 1
1+y2

.

This is especially interesting because arctan is a transcendental function whose deriva-
tive is an algebraic function! So apparently the line between these categories is not as
distinct as it might seem.

(29.18) Let f be differentiable on R with a = sup{|f ′(x)| : x ∈ R}.
(a) Choose s0, and recursively define sn = f(sn−1) for n ≥ 1. Observe that |sn+1−sn| =
|f(sn)−f(sn−1)|. Therefore by the mean value theorem, there is some yn between sn−1
and sn such that ∣∣∣∣f(sn)− f(sn−1)

sn − sn−1

∣∣∣∣ = |f ′(yn)| < a

In particular, |sn+1 − sn| = |f(sn) − f(sn−1)| < a|sn − sn−1| < an−1|s1 − s0|. We
claim this implies sn is Cauchy. For given ε > 0, there exists some N such that



aN

1−a |s1 − s0| < ε. Then for n > m > N , we have

|sn − sm| ≤
n∑

k=m+1

|sk − sk+1|

≤
n∑

k=m+1

ak−1|s1 − s0|

= (am + am+1 + · · ·+ an−1)|s1 − s0|
= am(1 + a+ a2 + · · ·+ an−m−1)|s1 − s0|

≤ am

1− a
|s1 − s0|

≤ aN

1− a
|s1 − s0|

< ε.

Ergo (sn) is Cauchy, hence converges to some s.

(b) Notice that (f(sn)) = (sn+1), so if sn → s, f(sn) → s as well. By continuity,
f(s) = s, and s is a fixed point of f .


