Homework 12 Solutions

MTH 320

1. Problems from Ross.
2. (29.2) Recall that if $f(x)=\cos x$, then $f^{\prime}(x)=-\sin x$. Ergo since the cosine function is continuous and differentiable everywhere on \mathbb{R}, for any $y<x \in \mathbb{R}$, by the Mean Value Theorem there is some $z \in(y, x)$ such that

$$
\frac{\cos x-\cos y}{x-y}=f^{\prime}(z)=-\sin z
$$

Taking the absolute value of both sides and multiplying by $|x-y|$, we see that $|\cos x-\cos y|=|\sin z||x-y|$. However, $|\sin z| \leq 1$ for any z, so in fact $|\cos x-\cos y| \leq$ $|x-y|$.
3. (29.3) (a) First, observe that since f differentiable on \mathbb{R}, we have f continuous on \mathbb{R}. Ergo f is in particular continuous on $[0,2]$ and differentiable on $(0,2)$, so by MVT, we see that there is some x in $(0,2)$ such that $f^{\prime}(x)=\frac{f(2)-f(0)}{2-0}=\frac{1}{2}$.
(b) First observe that f is continuous on $[1,2]$ and differentiable on $(1,2)$, so by MVT there is some $y \in(1,2)$ with the property that $f^{\prime}(y)=\frac{f(2)-f(1)}{2-1}=0$. But this means there is some x in $(0,2)$ with $f^{\prime}(x)=\frac{1}{2}$ from part (a) and some $y \in(0,2)$ with $f^{\prime}(y)=0$. Since derivatives of functions over intervals have the intermediate value property, we see there is some z between x and y with $f^{\prime}(z)=\frac{1}{7}$.
4. (29.4) Let f and g be differentiable functions on an interval I, and let $f(a)=f(b)=0$ for some $a<b$ on I. Following the hint, we consider the function $h(x)=f(x) e^{g(x)}$. Then h is continuous on $[a, b]$ and differentiable on (a, b), and $h(a)=0=h(b)$. Moreover, we see that in general $h^{\prime}(x)=f^{\prime}(x) e^{g(x)}+f(x) g^{\prime}(x) e^{g(x)}$. Therefore by the Mean Value Theorem, there is some $z \in(a, b)$ such that

$$
0=\frac{h(b)-h(a)}{a-b}=f^{\prime}(z) e^{g(z)}+f(z) g^{\prime}(z) e^{g(z)}
$$

Ergo $0=\left(f^{\prime}(x)+f(x) g^{\prime}(x)\right) e^{g(x)}$. But since $e^{g(x)} \neq 0$, in fact we have $0=f^{\prime}(x)+$ $f(x) g^{\prime}(x)$.
(29.5) Suppose $|f(x)-f(y)| \leq(x-y)^{2}$ for all x, y in \mathbb{R}. Then for any given $a \in \mathbb{R}$, we have $\left|\frac{f(x)-f(a)}{x-a}\right| \leq|x-a|$, so by the squeeze theorem, as $x \rightarrow a,\left|\frac{f(x)-f(a)}{x-a}\right| \rightarrow 0$. Therefore $f^{\prime}(a)=0$. Since a was arbitrary, $f^{\prime}(x)$ is identically zero on \mathbb{R}, so by Corollary
$29.4 f$ must be a constant function.
(29.9) Let $f(x)=e^{x}-e x$. We claim this function is nonnegative everywhere. First, observe that $f(1)=0$. Now observe that $f^{\prime}(x)=e^{x}-e$ is positive on $(1, \infty)$ and negative on $(-\infty, 1)$, so f is decreasing on $(-\infty, 1]$ and increasing on $[1, \infty)$. In particular $f(1)=0$ is the minimum value taken by f. Ergo $e^{x} \geq e x$ everywhere.
(29.13) Suppose f, g are differentiable, $f(0)=g(0)$, and $f^{\prime}(x) \leq g^{\prime}(x)$ on \mathbb{R}. Consider the function $g-f(x)$. Observe that $g-f(0)=0$, and $(g-f)^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x) \geq 0$ for $x \geq 0$. Therefore $g-f$ is an increasing function, so by Corollary $29.7 x \geq 0$, $g-f(x) \geq g-f(0)=0$, or equivalently for $x \geq 0, g(x) \geq f(x)$.
(29.16)Let $x=g(y)=\arctan y$ be the inverse of $y=f(x)=\tan x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. By an application of the quotient rule, we know $f^{\prime}(x)=\sec ^{2}(x) \neq 0$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Therefore by Theorem 29.9, $g^{\prime}(y)=\frac{1}{\sec ^{2}(x)}$. It remains to turn this into an expression in y. Recall that $y=\tan x$, so drawing an appropriate right triangle shows that $\sec x=\frac{1}{\sqrt{y^{2}+1}}$. Therefore $g^{\prime}(x)=\frac{1}{1+y^{2}}$.

This is especially interesting because arctan is a transcendental function whose derivative is an algebraic function! So apparently the line between these categories is not as distinct as it might seem.
(29.18) Let f be differentiable on \mathbb{R} with $a=\sup \left\{\left|f^{\prime}(x)\right|: x \in \mathbb{R}\right\}$.
(a) Choose s_{0}, and recursively define $s_{n}=f\left(s_{n-1}\right)$ for $n \geq 1$. Observe that $\left|s_{n+1}-s_{n}\right|=$ $\left|f\left(s_{n}\right)-f\left(s_{n-1}\right)\right|$. Therefore by the mean value theorem, there is some y_{n} between s_{n-1} and s_{n} such that

$$
\left|\frac{f\left(s_{n}\right)-f\left(s_{n-1}\right)}{s_{n}-s_{n-1}}\right|=\left|f^{\prime}\left(y_{n}\right)\right|<a
$$

In particular, $\left|s_{n+1}-s_{n}\right|=\left|f\left(s_{n}\right)-f\left(s_{n-1}\right)\right|<a\left|s_{n}-s_{n-1}\right|<a^{n-1}\left|s_{1}-s_{0}\right|$. We claim this implies s_{n} is Cauchy. For given $\epsilon>0$, there exists some N such that
$\frac{a^{N}}{1-a}\left|s_{1}-s_{0}\right|<\epsilon$. Then for $n>m>N$, we have

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & \leq \sum_{k=m+1}^{n}\left|s_{k}-s_{k+1}\right| \\
& \leq \sum_{k=m+1}^{n} a^{k-1}\left|s_{1}-s_{0}\right| \\
& =\left(a^{m}+a^{m+1}+\cdots+a^{n-1}\right)\left|s_{1}-s_{0}\right| \\
& =a^{m}\left(1+a+a^{2}+\cdots+a^{n-m-1}\right)\left|s_{1}-s_{0}\right| \\
& \leq \frac{a^{m}}{1-a}\left|s_{1}-s_{0}\right| \\
& \leq \frac{a^{N}}{1-a}\left|s_{1}-s_{0}\right| \\
& <\epsilon
\end{aligned}
$$

Ergo $\left(s_{n}\right)$ is Cauchy, hence converges to some s.
(b) Notice that $\left(f\left(s_{n}\right)\right)=\left(s_{n+1}\right)$, so if $s_{n} \rightarrow s, f\left(s_{n}\right) \rightarrow s$ as well. By continuity, $f(s)=s$, and s is a fixed point of f.

