Homework 12 Solutions

MTH 320

1. Problems from Ross.

2. (29.2) Recall that if f(x) = cosx, then f'(x) = —sinz. Ergo since the cosine function
is continuous and differentiable everywhere on R, for any y < x € R, by the Mean
Value Theorem there is some z € (y,x) such that

COS T — COS
CORT TR f'(z) = —sinz
r—Yy
Taking the absolute value of both sides and multiplying by |z — y|, we see that
| cos z—cosy| = |sin z||z —y|. However, |sin z| < 1 for any z, so in fact | cos z—cosy| <
|z —yl.

3. (29.3) (a) First, observe that since f differentiable on R, we have f continuous on R.
Ergo f is in particular continuous on [0, 2] and differentiable on (0,2), so by MVT, we

see that there is some x in (0,2) such that f'(z) = % =1

(b) First observe that f is continuous on [1,2] and differentiable on (1,2), so by MVT

there is some y € (1,2) with the property that f'(y) = % = (0. But this means

there is some z in (0, 2) with f/(z) = 3 from part (a) and some y € (0, 2) with f(y) = 0.
Since derivatives of functions over intervals have the intermediate value property, we
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see there is some 2 between x and y with f'(2) = =.

4. (29.4) Let f and g be differentiable functions on an interval I, and let f(a) = f(b) =0
for some a < b on I. Following the hint, we consider the function h(x) = f(z)ed®.
Then h is continuous on [a, b] and differentiable on (a,b), and h(a) = 0 = h(b). More-
over, we see that in general b'(z) = f'(x)e9® + f(z)g'(z)e?™. Therefore by the Mean
Value Theorem, there is some z € (a,b) such that

h(b) — h(a)
a—2b

Ergo 0 = (f'(z) + f(2)¢'(z))ed™®. But since 9™ #£ 0, in fact we have 0 = f'(x) +
f(x)g ().

0= = [ + f(2)g ()

(29.5) Suppose |f(z) — f(y)| < (x —y)? for all z,y in R. Then for any given a € R, we
have |W| < |z — al, so by the squeeze theorem, as z — a, |%| — 0. There-
fore f'(a) = 0. Since a was arbitrary, f'(z) is identically zero on R, so by Corollary



29.4 f must be a constant function.

(29.9) Let f(x) = €* — ex. We claim this function is nonnegative everywhere. First,
observe that f(1) = 0. Now observe that f'(z) = e* — e is positive on (1, 00) and nega-
tive on (—o0, 1), so f is decreasing on (—oo, 1] and increasing on [1, 00). In particular
f(1) =0 is the minimum value taken by f. Ergo e* > ex everywhere.

(29.13) Suppose f, g are differentiable, f(0) = ¢(0), and f'(x) < ¢’(z) on R. Consider
the function g — f(z). Observe that g — f(0) =0, and (¢ — f)'(z) = ¢'(z) — f'(z) > 0
for x+ > 0. Therefore g — f is an increasing function, so by Corollary 29.7 x > 0,
g— f(z) > g— f(0) =0, or equivalently for z > 0, g(x) > f(z).

(29.16)Let x = g(y) = arctany be the inverse of y = f(x) = tanx on (—7, 7). By an
application of the quotient rule, we know f'(z) = sec*(x) # 0 on (=3, %). Therefore

by Theorem 29.9, ¢'(y) = @ It remains to turn this into an expression in y. Recall
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that y = tanz, so drawing an appropriate right triangle shows that secx =

! _ 1
Therefore ¢'(z) = 175
This is especially interesting because arctan is a transcendental function whose deriva-

tive is an algebraic function! So apparently the line between these categories is not as
distinct as it might seem.

(29.18) Let f be differentiable on R with a = sup{|f’(z)| : * € R}.

(a) Choose sg, and recursively define s,, = f(s,_1) for n > 1. Observe that |s,.1—S$,| =
|f(sn)— f(sp_1)|- Therefore by the mean value theorem, there is some y,, between s,,_4
and s,, such that

= |f/(yn)| <a

Sp — Sn—1

‘f(sn) — f(sn-1)

In particular, [s,i1 — Su| = |f(sn) — f(Sn_1)| < al$n — Sn_1| < a7 ts; — so|. We
claim this implies s, is Cauchy. For given € > 0, there exists some N such that



N
—|s1 — 50| < e. Then for n >m > N, we have

n

(50— Sml <) Isk — Sk

k=m+1
n

< Y d s — sl

k=m+1
= (@™ 4+a™" + - +a")|s1 — s

=a"(1+a+a®+---+a"""")|s; — s

am
< 1 —a|81 — S0
N
< 75 sol
<€

Ergo (s,) is Cauchy, hence converges to some s.

(b) Notice that (f(s,)) = (Spt1), so if s, = s, f(s,) — s as well. By continuity,
f(s) = s, and s is a fixed point of f.



