1. Problems from Ross.

2. (29.2) Recall that if $f(x) = \cos x$, then $f'(x) = -\sin x$. Ergo since the cosine function is continuous and differentiable everywhere on \mathbb{R}, for any $y < x \in \mathbb{R}$, by the Mean Value Theorem there is some $z \in (y, x)$ such that

$$\frac{\cos x - \cos y}{x - y} = f'(z) = -\sin z$$

Taking the absolute value of both sides and multiplying by $|x - y|$, we see that $|\cos x - \cos y| = |\sin z||x - y|$. However, $|\sin z| \leq 1$ for any z, so in fact $|\cos x - \cos y| \leq |x - y|$.

3. (29.3) (a) First, observe that since f is differentiable on \mathbb{R}, we have f continuous on \mathbb{R}. Ergo f is in particular continuous on $[0, 2]$ and differentiable on $(0, 2)$, so by MVT, we see that there is some x in $(0, 2)$ such that $f'(x) = \frac{f(2) - f(0)}{2 - 0} = \frac{1}{2}$.

(b) First observe that f is continuous on $[1, 2]$ and differentiable on $(1, 2)$, so by MVT, there is some $y \in (1, 2)$ with the property that $f'(y) = \frac{f(2) - f(1)}{2 - 1} = 0$. But this means there is some x in $(0, 2)$ with $f'(x) = \frac{1}{2}$ from part (a) and some $y \in (0, 2)$ with $f'(y) = 0$. Since derivatives of functions over intervals have the intermediate value property, we see there is some z between x and y with $f'(z) = \frac{1}{2}$.

4. (29.4) Let f and g be differentiable functions on an interval I, and let $f(a) = f(b) = 0$ for some $a < b$ on I. Following the hint, we consider the function $h(x) = f(x)e^{g(x)}$. Then h is continuous on $[a, b]$ and differentiable on (a, b), and $h(a) = 0 = h(b)$. Moreover, we see that in general $h'(x) = f'(x)e^{g(x)} + f(x)g'(x)e^{g(x)}$. Therefore by the Mean Value Theorem, there is some $z \in (a, b)$ such that

$$0 = \frac{h(b) - h(a)}{a - b} = f'(z)e^{g(z)} + f(z)g'(z)e^{g(z)}$$

Ergo $0 = (f'(x) + f(x)g'(x))e^{g(x)}$. But since $e^{g(x)} \neq 0$, in fact we have $0 = f'(x) + f(x)g'(x)$.

(29.5) Suppose $|f(x) - f(y)| \leq (x - y)^2$ for all x, y in \mathbb{R}. Then for any given $a \in \mathbb{R}$, we have $|\frac{f(x) - f(a)}{x - a}| \leq |x - a|$, so by the squeeze theorem, as $x \to a$, $|\frac{f(x) - f(a)}{x - a}| \to 0$. Therefore $f'(a) = 0$. Since a was arbitrary, $f'(x)$ is identically zero on \mathbb{R}, so by Corollary
29.4 \(f \) must be a constant function.

(29.9) Let \(f(x) = e^x - ex \). We claim this function is nonnegative everywhere. First, observe that \(f(1) = 0 \). Now observe that \(f'(x) = e^x - e \) is positive on \((1, \infty)\) and negative on \((-\infty, 1)\), so \(f \) is decreasing on \((-\infty, 1)\) and increasing on \([1, \infty)\). In particular \(f(1) = 0 \) is the minimum value taken by \(f \). Ergo \(e^x \geq ex \) everywhere.

(29.13) Suppose \(f, g \) are differentiable, \(f(0) = g(0) \), and \(f'(x) \leq g'(x) \) on \(\mathbb{R} \). Consider the function \(g - f(x) \). Observe that \(g - f(0) = 0 \), and
\[
(g - f)'(x) = g'(x) - f'(x) \geq 0 \quad \text{for} \quad x \geq 0.
\]
Therefore \(g - f \) is an increasing function, so by Corollary 29.7 \(g(x) \geq f(x) \).

(29.16) Let \(x = g(y) = \arctan y \) be the inverse of \(y = f(x) = \tan x \) on \((-\pi/2, \pi/2)\). By an application of the quotient rule, we know \(f'(x) = \sec^2(x) \neq 0 \) on \((-\pi/2, \pi/2)\). Therefore by Theorem 29.9,
\[
g'(y) = \frac{1}{\sec^2(x)} = \frac{1}{1+y^2}.
\]
This is especially interesting because \(\arctan \) is a transcendental function whose derivative is an algebraic function! So apparently the line between these categories is not as distinct as it might seem.

(29.18) Let \(f \) be differentiable on \(\mathbb{R} \) with \(a = \sup\{|f'(x)| : x \in \mathbb{R}\} \).
(a) Choose \(s_0 \), and recursively define \(s_n = f(s_{n-1}) \) for \(n \geq 1 \). Observe that
\[
|s_{n+1} - s_n| = |f(s_n) - f(s_{n-1})| \leq a|s_n - s_{n-1}|.
\]
Therefore by the mean value theorem, there is some \(y_n \) between \(s_{n-1} \) and \(s_n \) such that
\[
\left| \frac{f(s_n) - f(s_{n-1})}{s_n - s_{n-1}} \right| = |f'(y_n)| < a.
\]
In particular, \(|s_{n+1} - s_n| = |f(s_n) - f(s_{n-1})| < a|s_n - s_{n-1}| < a^{n-1}|s_1 - s_0| \). We claim this implies \(s_n \) is Cauchy. For given \(\epsilon > 0 \), there exists some \(N \) such that
\[\frac{a^N}{1-a}|s_1 - s_0| < \epsilon. \] Then for \(n > m > N \), we have

\[
|s_n - s_m| \leq \sum_{k=m+1}^{n} |s_k - s_{k+1}|
\]
\[
\leq \sum_{k=m+1}^{n} a^{k-1}|s_1 - s_0|
\]
\[
= (a^m + a^{m+1} + \cdots + a^{n-1})|s_1 - s_0|
\]
\[
= a^m(1 + a + a^2 + \cdots + a^{n-m-1})|s_1 - s_0|
\]
\[
\leq \frac{a^m}{1-a}|s_1 - s_0|
\]
\[
\leq \frac{a^N}{1-a}|s_1 - s_0|
\]
\[
< \epsilon.
\]

Ergo \((s_n)\) is Cauchy, hence converges to some \(s\).

(b) Notice that \((f(s_n)) = (s_{n+1})\), so if \(s_n \rightarrow s\), \(f(s_n) \rightarrow s\) as well. By continuity, \(f(s) = s\), and \(s\) is a fixed point of \(f\).