Homework 11 Solutions

MTH 320

- (25.3)(a) Clearly the pointwise limit of $\left(f_{n}\right)$ is the constant function $f(x) \equiv \frac{1}{2}$. We have

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{\cos x}{2 n+\sin ^{2} x}\right| \leq \frac{1}{2 n}
$$

So for $\epsilon>0$, if we choose N such that $\frac{1}{2 N}<\epsilon$, for $n>N$ and any $x \in \mathbb{R}$ we have $\left|f_{n}(x)-f(x)\right| \leq \frac{1}{2 n}<\epsilon$.
(b) The limit is the integral of the limit function, to wit, $\int_{2}^{7} \frac{1}{2} d x=\frac{5}{2}$.

- (25.6) (a) If $\sum\left|a_{k}\right|$ converges, then observe that for $x \in[-1,1]$, we have $\left|a_{k} x^{k}\right|<M_{k}=$ $\left|a_{k}\right|$. So by the M-test, we see that $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$. Since each term $a_{k} x^{k}$ is continuous, the limit function must itself be continuous.
(b)Yes, by part (a), since $\sum \frac{1}{n^{2}}$ converges.
- (25.7) Observe that for all $x \in \mathbb{R},\left|\frac{1}{n^{2}} \cos (n x)\right|<\frac{1}{n^{2}}=M_{n}$. Since $\sum \frac{1}{n^{2}}$ converges, by the Weierstrass M-test $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n x)$ converges uniformly on \mathbb{R}. In particular since each term of the series is continuous, the limit function must be continuous.
- (25.10) (a) If $x=0$ every term of the series is 0 and it converges. If $0<x<1$, we see that $\left|\frac{a_{n+1}}{a_{n}}\right|=x \cdot \frac{1+x^{n}}{1+x^{n+1}} \rightarrow x<1$, so by the Ratio Test the series converges at x.
(b) For $x \in[0, a], a<1$, we see that $\frac{x^{n}}{1+x^{n}}<a^{n}$. But $\sum a^{n}$ converges, so by the M-test, $\sum \frac{x^{n}}{1+x^{n}}$ converges uniformly on $[0, a]$.
(c) No. Notice that $\frac{x^{n}}{1+x^{n}}>\frac{x^{n}}{2}$, and $\sum_{n=0}^{\infty} \frac{x^{n}}{2}=\frac{1}{2(1-x)}$ is unbounded on $[0,1)$. So $\sum \frac{x^{n}}{1+x^{n}}$ is unbounded on $[0,1)$. But each partial sum of the series is bounded on $[0,1)$ (for example because it is a continous function on $[0,1]$, and therefore bounded by the Extreme Value Theorem). The uniform limit of bounded functions is necessarily bounded.
- (28.2)(a) We compute that $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2}(x-2)\left(x^{2}+2 x+4\right) x-2=$ $\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=12$.
(b) We compute that $\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{x+2-(a+2)}{x-a}=\lim _{x \rightarrow a} \frac{x-a}{x-a}=1$.
(c) We compute that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \cos x}{x}=\lim _{x \rightarrow 0} x \cos x=0 \cos 0=0$.
(d) We compute that $\lim _{x \rightarrow 1} \frac{r(x)-r(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{3 x+4}{2 x-1}-7}{x-1}=\lim _{x \rightarrow 1} \frac{-11 x+11}{(x-1)(2 x-1)}=\lim _{x \rightarrow 1} \frac{-11}{(2 x-1)}=$ -11 .
- (28.5) (a) Yes, f and g are differentiable on all of \mathbb{R}. The only point that we need to check carefully is $f(x)$ at $x=0$. We compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}-0}{x} \\
& =\lim _{x \rightarrow 0} x \sin \frac{1}{x} \\
& =0
\end{aligned}
$$

Here the last step follows from the squeeze theorem for functions, since $-x \leq x \sin \left(\frac{1}{x}\right) \leq$ x, and $\lim _{x \rightarrow 0}-x=0=\lim _{x \rightarrow 0}-x$. Therefore $f^{\prime}(0)=0$, and f is differentiable everywhere as promised.
(b) If $x=\frac{1}{\pi n}, f(x)=\left(\frac{1}{\pi n}\right)^{2} \sin (\pi n)=0$.
(c) The expression $\lim _{x \rightarrow 0} \frac{g(f(x))-g(f(0))}{f(x)-f(0)}$ is meaningless because there are points x arbitrarily close to 0 for which $f(x)=0=f(0)$, and hence for which this expression is undefined.

- (28.8) (a) Let x_{n} be any sequence of points in \mathbb{R} with $x_{n} \rightarrow 0$. Then if x_{n} is rational, $f\left(x_{n}\right)=x_{n}^{2}$, and when x_{n} is irrational, $f\left(x_{n}\right)=0$, so in either case, $0 \leq f\left(x_{n}\right) \leq x_{n}^{2}$. Ergo since $\lim _{n \rightarrow \infty} x_{n}^{2}=0$, by the squeeze theorem for sequences, $\lim f\left(x_{n}\right)=0=f(0)$. Since (x_{n}) was arbitrary, f is continuous at 0 .
(b) Let $x \neq 0$. Then we may pick a sequence of rational numbers $\left(x_{n}\right)$ such that $x_{n} \rightarrow x$, and also a sequence of irrational numbers $\left(y_{n}\right)$ such that $y_{n} \rightarrow x$. We observe that $\lim f\left(x_{n}\right)=\lim x_{n}^{2}=x^{2}$, but $\lim f\left(y_{n}\right)=\lim 0=0$. Since $x^{2} \neq 0$, $\lim f\left(x_{n}\right) \neq \lim f\left(y_{n}\right)$, so f cannot be continuous at x.
(c) Observe that for $x \neq 0$ the quotient $\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}$ is equal to 0 when x is irrational and is equal to x when x is rational. So for all x, we see that $\left|\frac{f(x)-f(0)}{x-0}\right|<|x|$, or alternately $-|x| \leq \frac{f(x)-f(0)}{x-0} \leq|x|$. Therefore by the squeeze theorem for functions, since $\lim _{x \rightarrow 0}|x|=0, \lim \frac{f(x)-f(0)}{x-0}=0=f^{\prime}(0)$.
- (28.14) Let f be differentiable at a, i.e, let there the $\operatorname{limit}_{\lim }^{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exist and equal some real number $f^{\prime}(a)$.
(a) Let $\left(h_{i}\right)$ be an arbitrary sequence of points in $\mathbb{R} \backslash\{0\}$ such that $h_{i} \rightarrow 0$. Then $\left(a+h_{i}\right)$ is a sequence of points in $\mathbb{R} \backslash\{a\}$ such that $a+h_{i} \rightarrow a$. Ergo by definition of the limit of functions, the limit of the sequence $\left(\frac{f\left(a+h_{i}\right)-f(a)}{a+h_{i}-a}\right)$ is $f^{\prime}(a)$. Since $\left(h_{i}\right)$ was arbitrary, we have proved that $\lim _{h_{i} \rightarrow 0} \frac{f\left(a+h_{i}\right)-f(a)}{h_{i}}=f^{\prime}(a)$.
(b) Notice that $\frac{f(a+h)-f(a-h)}{2 h}=\frac{1}{2} \frac{f(a+h)-f(a)+f(a)-f(a-h)}{h}=\frac{1}{2}\left[\frac{f(a+h)-f(a)}{h}+\frac{f(a)-f(a-h)}{h}\right]$. We already know that $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)$. Moreover, if $\left(h_{i}\right)$ is any sequence of nonzero points such that $h_{i} \rightarrow 0$, then $\left(-h_{i}\right)$ is a sequence of nonzero points tending to 0 , so since $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)$, we must have $\lim _{i \rightarrow \infty} \frac{f\left(a+-h_{i}\right)-f(a)}{-h_{i}}=f^{\prime}(a)$ as a limit of sequences. But this implies that $\lim _{i \rightarrow \infty} \frac{f(a)-f\left(a-h_{i}\right)}{h_{i}}=f^{\prime}(a)$. Since $\left(h_{i}\right)$ was arbitrary, we now have a limit of functions $\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}=f^{\prime}(a)$. Ergo in total we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h} & =\lim _{h \rightarrow 0} \frac{1}{2}\left[\frac{f(a+h)-f(a)}{h}+\frac{f(a)-f(a-h)}{h}\right] \\
& =\frac{1}{2}\left[f^{\prime}(a)+f^{\prime}(a)\right] \\
& =f^{\prime}(a)
\end{aligned}
$$

- (28.16) First, suppose $f^{\prime}(a)$ exists. Then for $x \neq a$, let $\epsilon(x)=f^{\prime}(a)-\frac{f(x)-f(a)}{x-a}$, and define $\epsilon(a)=0$. Then $\epsilon(x)$ clearly satisfies the relationship given, and $\lim _{x \rightarrow a} \epsilon(x)=$ $\lim x \rightarrow a\left[f^{\prime}(a)-\frac{f(x)-f(a)}{x-a}\right]=f^{\prime}(a)-f^{\prime}(a)=0$. Conversely, suppose there is a number $f^{\prime}(a)$ and a function $\epsilon(x)$ on I with $\lim _{x \rightarrow a} \epsilon(x)=0$ such that the relationship $f(x)-$ $f(a)=(x-a)\left[f^{\prime}(a)-\epsilon(x)\right]$ holds. Then when $x \neq a$, we may divide both sides by $x-a$, so when $x \neq a$, we have $f^{\prime}(a)-\epsilon(x)=\frac{f(x)-f(a)}{x-a}$. But as $x \rightarrow a$, the limit of the left hand side is $f^{\prime}(a)$, so $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ and therefore the derivative of f at a exists.

