
Homework 11 Solutions
MTH 320

• (25.3)(a) Clearly the pointwise limit of (fn) is the constant function f(x) ≡ 1
2
. We

have

|fn(x)− f(x)| =
∣∣∣∣ cosx

2n+ sin2 x

∣∣∣∣ ≤ 1

2n
.

So for ε > 0, if we choose N such that 1
2N

< ε, for n > N and any x ∈ R we have
|fn(x)− f(x)| ≤ 1

2n
< ε.

(b) The limit is the integral of the limit function, to wit,
∫ 7

2
1
2
dx = 5

2
.

• (25.6) (a) If
∑
|ak| converges, then observe that for x ∈ [−1, 1], we have |akxk| < Mk =

|ak|. So by the M-test, we see that
∑
akx

k converges uniformly on [−1, 1]. Since each
term akx

k is continuous, the limit function must itself be continuous.

(b)Yes, by part (a), since
∑

1
n2 converges.

• (25.7) Observe that for all x ∈ R, | 1
n2 cos(nx)| < 1

n2 = Mn. Since
∑

1
n2 converges, by

the Weierstrass M -test
∑∞

n=1
1
n2 cos(nx) converges uniformly on R. In particular since

each term of the series is continuous, the limit function must be continuous.

• (25.10) (a) If x = 0 every term of the series is 0 and it converges. If 0 < x < 1, we see
that |an+1

an
| = x · 1+xn

1+xn+1 → x < 1, so by the Ratio Test the series converges at x.

(b) For x ∈ [0, a], a < 1, we see that xn

1+xn
< an. But

∑
an converges, so by the M -test,∑

xn

1+xn
converges uniformly on [0, a].

(c) No. Notice that xn

1+xn
> xn

2
, and

∑∞
n=0

xn

2
= 1

2(1−x) is unbounded on [0, 1). So∑
xn

1+xn
is unbounded on [0, 1). But each partial sum of the series is bounded on [0, 1)

(for example because it is a continous function on [0, 1], and therefore bounded by
the Extreme Value Theorem). The uniform limit of bounded functions is necessarily
bounded.

• (28.2)(a) We compute that limx→2
f(x)−f(2)

x−2 = limx→2
x3−8
x−2 = limx→2 (x− 2)(x2 + 2x+ 4)x− 2 =

limx→2(x
2 + 2x+ 4) = 12.

(b) We compute that limx→a
g(x)−g(a)
x−a = limx→a

x+2−(a+2)
x−a = limx→a

x−a
x−a = 1.



(c) We compute that limx→0
f(x)−f(0)

x−0 = limx→0
x2 cosx

x
= limx→0 x cosx = 0 cos 0 = 0.

(d) We compute that limx→1
r(x)−r(1)
x−1 = limx→1

3x+4
2x−1

−7
x−1 = limx→1

−11x+11
(x−1)(2x−1) = limx→1

−11
(2x−1) =

−11.

• (28.5) (a) Yes, f and g are differentiable on all of R. The only point that we need to
check carefully is f(x) at x = 0. We compute

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin 1
x
− 0

x

= lim
x→0

x sin
1

x
= 0

Here the last step follows from the squeeze theorem for functions, since−x ≤ x sin( 1
x
) ≤

x, and limx→0−x = 0 = limx→0−x. Therefore f ′(0) = 0, and f is differentiable every-
where as promised.

(b) If x = 1
πn

, f(x) = ( 1
πn

)2 sin(πn) = 0.

(c)The expression limx→0
g(f(x))−g(f(0))
f(x)−f(0) is meaningless because there are points x arbi-

trarily close to 0 for which f(x) = 0 = f(0), and hence for which this expression is
undefined.

• (28.8) (a) Let xn be any sequence of points in R with xn → 0. Then if xn is rational,
f(xn) = x2n, and when xn is irrational, f(xn) = 0, so in either case, 0 ≤ f(xn) ≤ x2n.
Ergo since limn→∞ x

2
n = 0, by the squeeze theorem for sequences, lim f(xn) = 0 = f(0).

Since (xn) was arbitrary, f is continuous at 0.

(b) Let x 6= 0. Then we may pick a sequence of rational numbers (xn) such that
xn → x, and also a sequence of irrational numbers (yn) such that yn → x. We
observe that lim f(xn) = limx2n = x2, but lim f(yn) = lim 0 = 0. Since x2 6= 0,
lim f(xn) 6= lim f(yn), so f cannot be continuous at x.

(c) Observe that for x 6= 0 the quotient f(x)−f(0)
x−0 = f(x)

x
is equal to 0 when x is

irrational and is equal to x when x is rational. So for all x, we see that |f(x)−f(0)
x−0 | < |x|,

or alternately −|x| ≤ f(x)−f(0)
x−0 ≤ |x|. Therefore by the squeeze theorem for functions,

since limx→0 |x| = 0, lim f(x)−f(0)
x−0 = 0 = f ′(0).

• (28.14) Let f be differentiable at a, i.e, let there the limit limx→a
f(x)−f(a)

x−a exist and
equal some real number f ′(a).



(a) Let (hi) be an arbitrary sequence of points in R\{0} such that hi → 0. Then
(a + hi) is a sequence of points in R\{a} such that a + hi → a. Ergo by definition of

the limit of functions, the limit of the sequence
(
f(a+hi)−f(a)

a+hi−a

)
is f ′(a). Since (hi) was

arbitrary, we have proved that limhi→0
f(a+hi)−f(a)

hi
= f ′(a).

(b) Notice that f(a+h)−f(a−h)
2h

= 1
2
f(a+h)−f(a)+f(a)−f(a−h)

h
= 1

2

[
f(a+h)−f(a)

h
+ f(a)−f(a−h)

h

]
.

We already know that limh→0
f(a+h)−f(a)

h
= f ′(a). Moreover, if (hi) is any sequence of

nonzero points such that hi → 0, then (−hi) is a sequence of nonzero points tending

to 0, so since limh→0
f(a+h)−f(a)

h
= f ′(a), we must have limi→∞

f(a+−hi)−f(a)
−hi = f ′(a) as

a limit of sequences. But this implies that limi→∞
f(a)−f(a−hi)

hi
= f ′(a). Since (hi) was

arbitrary, we now have a limit of functions limh→0
f(a)−f(a−h)

h
= f ′(a). Ergo in total we

have

lim
h→0

f(a+ h)− f(a− h)

2h
= lim

h→0

1

2

[
f(a+ h)− f(a)

h
+
f(a)− f(a− h)

h

]
=

1

2
[f ′(a) + f ′(a)]

= f ′(a)

• (28.16) First, suppose f ′(a) exists. Then for x 6= a, let ε(x) = f ′(a) − f(x)−f(a)
x−a , and

define ε(a) = 0. Then ε(x) clearly satisfies the relationship given, and limx→a ε(x) =

limx→ a[f ′(a)− f(x)−f(a)
x−a ] = f ′(a)− f ′(a) = 0. Conversely, suppose there is a number

f ′(a) and a function ε(x) on I with limx→a ε(x) = 0 such that the relationship f(x)−
f(a) = (x − a)[f ′(a) − ε(x)] holds. Then when x 6= a, we may divide both sides by

x− a, so when x 6= a, we have f ′(a)− ε(x) = f(x)−f(a)
x−a . But as x→ a, the limit of the

left hand side is f ′(a), so f ′(a) = limx→a
f(x)−f(a)

x−a and therefore the derivative of f at
a exists.


