Homework 11 Solutions

MTH 320

e (25.3)(a) Clearly the pointwise limit of (f,) is the constant function f(z) = 3. We

have
1

2n
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|[fn(z) — f(z)] =

So for € > 0, if we choose N such that - < ¢, for n > N and any x € R we have

Fule) — (@) < £ < =

o2n + sin x

(b) The limit is the integral of the limit function, to wit, f; tdr =3

(25.6) (a) If 3~ |ag| converges, then observe that for x € [—1, 1], we have |a,z*| < M), =
lax|. So by the M-test, we see that > apz* converges uniformly on [—1,1]. Since each
term azz® is continuous, the limit function must itself be continuous.

(b)Yes, by part (a), since >_ -5 converges.

(25.7) Observe that for all = E R, |5 cos(nz)| < = = M,. Since Y -5 converges, by
the Weierstrass M-test Y oo, 2 172 cos(nx) converges uniformly on R. In particular since
each term of the series is continuous, the limit function must be continuous.

(25.10) (a) If z = 0 every term of the series is 0 and it converges. If 0 < x < 1, we see

that |aZ—:1] =x- lrgg—ﬂl — x < 1, so by the Ratio Test the series converges at .

(b) For x € [0, a], a < 1, we see that
o1 f;n converges uniformly on [0, a].

T < a". But > a™ converges, so by the M-test,

(c) No. Notice that = > ,and Yo7 L = ﬁ is unbounded on [0,1). So
> l_f% is unbounded on [0, 1). But each partial sum of the series is bounded on [0, 1)
(for example because it is a continous function on [0, 1], and therefore bounded by
the Extreme Value Theorem). The uniform limit of bounded functions is necessarily

bounded.

(28.2)(a) We compute that lim,_,, 2=1@) —
lim, so(2? + 22 +4) = 12.

=lim, 4o (z —2)(2? + 22 +4)z — 2 =

9(x)—g(a)

r—a

z42—(a+2)
z—a

(b) We compute that lim,_,, = lim,_,, =lim, =0 =1



(c) We compute that lim,_,q f(xa);g( ) — lim,_,q m = lim,_,gxcosz = 0cos0 = 0.
3z+4
(d) We compute that lim, T(xiiq(l) = lim,; *224— = lim, % = lim,_,; ﬁ =

—11.

(28.5) (a) Yes, f and g are differentiable on all of R. The only point that we need to
check carefully is f(x) at x = 0. We compute

fx)—f0) . asing—0

lim = lim
z—0 x—0 z—0 T
= lim z sin —
x—0 €x
=0

Here the last step follows from the squeeze theorem for functions, since —z < x sin(%) <
x, and lim,_,o —z = 0 = lim,_,o —z. Therefore f’(0) =0, and f is differentiable every-
where as promised.

(b) If 2 = =, f(z) = (=)*sin(mn) = 0.

9(f(x))=g(f

©
f(0 )

gf ) g meaningless because there are points x arbi-
xz) = 0 = f(0), and hence for which this expression is

(¢)The expression lim, o £ (i
(

f
trarily close to 0 for which f
undefined.

(28.8) (a) Let x, be any sequence of points in R with z,, — 0. Then if z,, is rational,
f(x,) = 22, and when =z, is irrational, f(x,) = 0, so in either case, 0 < f(x,) < z2.
Ergo since lim,,_,+, #2 = 0, by the squeeze theorem for sequences, lim f(z,) = 0 = f(0).
Since (z,,) was arbitrary, f is continuous at 0.

(b) Let # # 0. Then we may pick a sequence of rational numbers (x,) such that
x, — x, and also a sequence of irrational numbers (y,) such that y, — x. We
observe that lim f(x,) = limz? = 22, but lim f(y,) = lim0 = 0. Since z* # 0,
lim f(z,) # lim f(y,), so f cannot be continuous at z.

(c) Observe that for x # 0 the quotient %g(o) = % is equal to 0 when z is

irrational and is equal to x when z is rational. So for all x, we see that ]M| <z,
or alternately —|z| < K ) f 0 < |z|. Therefore by the squeeze theorem for functions,

since lim, o |z| = 0, lim % =0=f'(0).

(28.14) Let f be differentiable at a, i.e, let there the limit lim,_,, £ (xiii @ oxist and
equal some real number f’(a).



(a) Let (h;) be an arbitrary sequence of points in R\{0} such that h; — 0. Then
(a + h;) is a sequence of points in R\{a} such that a + h; — a. Ergo by definition of

the limit of functions, the limit of the sequence (%) is f'(a). Since (h;) was
arbitrary, we have proved that limy,_,o f(“%w = f'(a).

(b) Notice that Heth=fle=h) _ 1 flath—flar+f@=Tah) _

1
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[f(a+h)—f(a) 4 f@)=fla=h)
h h :

We already know that limy,_,o w = f'(a). Moreover, if (h;) is any sequence of

nonzero points such that h; — 0, then (—h;) is a sequence of nonzero points tending

f(aL = f'(a), we must have lim; ., Wr_h—h f'(a) as

a limit of sequences. But thls implies that lim; o f(a)_f—a_hi = f'(a). Since (h;) was

’L

f(a) (a—

to 0, so since limy_,q

arbitrary, we now have a limit of functions limy,_,o = f'(a). Ergo in total we

have

i @t = fa=h) _1Tfa+h) = f(@) , fla) = fla=h)
h—0 2h 02 h h
"(a
)

)+ f'(a)]

lim
h—
1
= 5[
= ['(a
(28.16) First, suppose f'(a) exists. Then for x # a, let €(z) = f'(a) — W, and
define €(a) = 0. Then €(z) clearly satisfies the relationship given, and lim,_,, ¢(z) =
limz — a[f’(a) — %] = f'(a) — f'(a) = 0. Conversely, suppose there is a number
f'(a) and a function €(z) on I with lim,_,, €(z) = 0 such that the relationship f(z) —
f(a) = (z — a)[f'(a) — €(x)] holds. Then when = # a, we may divide both sides by
x — a, so when = # a, we have f'(a) — €(z) = % But as x — a, the limit of the
left hand side is f’(a), so f'(a) = lim,_, W and therefore the derivative of f at
a exists.



