Homework 10 Solutions

2. - Notice $f_{n}(0)=0=f_{n}(1)$ for all n. For $x \neq 0,1$, let $\alpha=\frac{1}{1-x}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n x(1-x)^{n} & =\lim _{n \rightarrow \infty} x \cdot \frac{n}{\alpha^{n}} \\
& =x \lim _{n \rightarrow \infty} \frac{n}{\alpha^{n}} \\
& =x(0) \\
& =0
\end{aligned}
$$

where the limit follows from the fact that, by Exercise 9.13, if $\alpha>1, \lim _{n \rightarrow \infty} \frac{\alpha^{n}}{n}=$ ∞. So f_{n} converges pointwise to $f \equiv 0$ on $[0,1]$.

- Since $\left|f_{n}(x)\right|<\frac{1}{\sqrt{n+1}}$, this sequence converges pointwise to 0 on $[0,1]$.
- Since $f_{n}(\pi)=(-1)^{n}$ for all n, we conclude this sequence of functions does not converge pointwise on $[0,2 \pi]$.
- Since $f_{n}(1)=n^{2}$ for all n, this sequence does not converge pointwise on $[0,1]$.

3. Problems from Ross.
(23.1) (a)Clearly $\sum n^{2} x^{n}$ diverges when $x \neq 0$, so the radius of convergence is $R=0$ and the interval of convergence is $\{0\}$.
(c) Let $\sum a_{n} x^{n}=\sum\left(\frac{2^{n}}{n^{2}}\right) x^{n}$. We observe that $\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{2 n^{2}}{(n+1)^{2}}\right| \rightarrow 2=\beta$ as $n \rightarrow \infty$, so the radius of convergence is $R=\frac{1}{2}$. The endpoints of the interval of convergence are $\pm \frac{1}{2}$; we observe that $f\left(\frac{1}{2}\right)=\sum \frac{1}{n^{2}}$ and $f\left(-\frac{1}{2}\right)=\sum \frac{(-1)^{n}}{n^{2}}$, both of which converge. Thus the interval of convergence is $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(e) Let $\sum a_{n} x^{n}=\sum\left(\frac{2^{n}}{n!}\right) x^{n}$. We observe that $\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{2}{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$. Therefore the radius of convergence is $R=\infty$, and the interval of convergence is \mathbb{R}.
(g) Let $\sum a_{n} x^{n}=\sum\left(\frac{3^{n}}{n \cdot 4^{n}}\right) x^{n}$. We observe that $\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{3 n}{4(n+1)}\right| \rightarrow \frac{3}{4}=\beta$ as $n \rightarrow \infty$. Therefore the radius of convergence is $R=\frac{4}{3}$. The endpoints of the interval of convergence are $\pm \frac{4}{3}$; we observe that $f\left(\frac{4}{3}\right)=\sum \frac{1}{n}$, which diverges, and $f\left(-\frac{4}{3}\right)=\sum \frac{(-1)^{n}}{n}$, which converges. So the interval of convergence is $\left[-\frac{4}{3}, \frac{4}{3}\right)$.
(23.4) (a) Notice that $\left|a_{n}\right|^{\frac{1}{n}}$ is equal to $\frac{2}{5}$ if n is odd and $\frac{6}{5}$ if n is odd. We see that $\lim \sup \left|a_{n}\right|^{\frac{1}{n}}$ is $\frac{6}{5}$ and $\lim \inf \left|a_{n}\right|^{\frac{1}{n}}$ is $\frac{4}{5}$. Similarly $\frac{a_{n+1}}{a_{n}}$ is either $\frac{2}{5}\left(\frac{1}{3}\right)^{n}$ if n is even and $\frac{6}{5}(3)^{n}$ if n is odd, so $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|=\infty$ and $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|=0$.
(b) No, by the Ratio Test. In both cases $\lim \sup \left|a_{n}\right|^{\frac{1}{n}}=\frac{6}{5}>1$.
(c) The radius of convergence R is $\frac{5}{6}$. Substituting $x=\frac{5}{6}$ gives a power series $\sum b_{n}$ such that $b_{n}=1$ if n is even, which certainly cannot converge. Similar, substituting $x=-\frac{5}{6}$ gives a series $\sum c_{n}$ such that $c_{n}=(-1)^{n}$ if n is even, which also cannot converge. So the interval of convergence is $\left(-\frac{5}{6}, \frac{5}{6}\right)$.
(23.5) Let $\sum a_{n} x^{n}$ be a power series with radius of convergence R.
(a) If the coefficients a_{n} are all integers and infinitely many are nonzero, then infinitely many $\left|a_{n}\right|^{\frac{1}{n}}$ are greater than or equal to 1 . Therefore $\sup \left\{\left|a_{n}\right|^{\frac{1}{n}}: n>N\right\}$ is at least one for any N. Ergo the $\beta=\limsup \left|a_{n}\right|^{\frac{1}{n}} \geq 1$, so $R=\frac{1}{\beta} \leq 1$.
(b) Suppose that $\lim \sup \left|a_{n}\right|>0$. Choose a constant c such that $0<c<\limsup \left|a_{n}\right|$. Then $\sup \left\{a_{n}: n>N\right\}>\lim \sup \left|a_{n}\right|>c$ for all N. Therefore some subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ has the property that $\left|a_{n_{k}}\right|>c$ for all k . Therefore $\left|a_{n_{k}}\right|^{\frac{1}{n_{k}}} \geq c^{\frac{1}{n_{k}}}$. Since c is a constant, $\lim _{k \rightarrow \infty} c^{\frac{1}{n_{k}}}=1$, so $\lim \sup \left|a_{n_{k}}\right|^{\frac{1}{n_{k}}} \geq 1$. This implies that the limit supremum of the entire sequence is greater than or equal to one, i.e. $\beta=\lim \sup \left|a_{n}\right|^{\frac{1}{n}} \geq 1$. Therefore $R=\frac{1}{\beta} \leq 1$.
(24.2) (a) The pointwise limit of $f_{n}(x)=\frac{x}{n}$ on $[0, \infty)$ is $f(x) \equiv 0$.
(b) Let $\epsilon>0$. Choose N such that $\frac{1}{N}<\epsilon$. For any $x \in[0,1]$ and $n>N$, we have $\left|f_{n}(x)-f(x)\right|=\frac{x}{n}<\frac{1}{n}<\epsilon$. So $\left(f_{n}\right)$ converges uniformly on $[0,1]$.
(c) Let $\epsilon=1$. Given any n a natural number, choose $x=n$. Then $\left|f_{n}(x)-f(x)\right|=1$. So there is no N such that $n>N$ implies $\left|f_{n}(x)-f(x)\right|<1$. Ergo $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$.
(24.3) (a) The pointwise limit of $f_{n}(x)=\frac{1}{1+x^{n}}$ is

$$
f(x)= \begin{cases}1 & x \in[0,1) \\ \frac{1}{2} & x=1 \\ 0 & x \in(1, \infty)\end{cases}
$$

(b) No; each $\left(f_{n}\right)$ is continuous on $[0,1]$ but the limit f is not continuous on $[0,1]$, hence $\left(f_{n}\right)$ cannot converge uniformly.
(c) No, similarly.
(24.4) (a) the pointwise limit of $f_{n}(x)=\frac{x^{n}}{1+x^{n}}=1-\frac{1}{1+x^{n}}$ is

$$
f(x)= \begin{cases}0 & x \in[0,1) \\ \frac{1}{2} & x=1 \\ 1 & x \in(1, \infty)\end{cases}
$$

(b) \&(c) Again because f is discontinuous at $x=1,\left(f_{n}\right)$ cannot converge uniformly to f either on $[0,1]$ or on $[0, \infty)$.
(24.10)(a) Let $\epsilon>0$. Choose N_{1} such that $n>N_{1}$ and $x \in S$ implies that $\mid f_{n}(x)-$ $f(x) \left\lvert\,<\frac{\epsilon}{2}\right.$. Furthermore choose N_{2} such that $n>N_{2}$ implies $\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2}$. Then $n>\max \left\{N_{1}, N_{2}\right\}$ implies that

$$
\left|f_{n}(x)+g_{n}(x)-f(x)+g(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

(b) We proceed to 24.11 .
(24.11)(a) Indeed, obvious.
(b) The sequence $\left(f_{n} g_{n}\right)=\left(\frac{x}{n}\right)$ does not converge uniformly on \mathbb{R} by exercise (24.2)(c).

