Homework 5 Solutions

MTH 310
$13,14,15,16,25,26$

- (Section 3.2 Problem 13)
(a) $S \cap T$ is in general a subring. Since both S and T are closed under subtraction and multiplication, the set of elements that are in both is as well.
(b) $S \cup T$ need not be a subring of R. Consider the subrings $\{0,3\}$ and $\{0,2,4\}$ of \mathbb{Z}_{6}. Their union $\{0,2,3,4\}$ is not a subring; it is not additively closed.
- (Section 3.2 Problem 14) Let R be an integral domain. Let e be a nonzero idempotent, so that $e^{2}=e$. Since multiplicative cancellation holds in integral domains, it follows that $e=1$. So the only idempotents in an integral domain are 0 and 1 .
- (Section 3.2 Problem 15) (a) We recall that multiplicative inverses, if they exist, are unique, and observe that $(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a(1) a^{-1}=a a^{-1}=1$. Similarly $\left(b^{-1} a^{-1}\right) a b=1$.
(b) We can get this from any pair of matrices which fail to commute.
- (Section 3.2 Problem 16) This is false. For example, 0 is not a unit.
- (Section 3.2 Problem 25) (a) Consider $R=\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. This is a ring with identity, namely $1_{R}=1$. Let S be the subring $\{0,3\}$. Then $0(3)=0=3(0)$ and $3(3)=3$, so $3=1_{S}$ is a multiplicative identity.
(b) Let $S \subset R$ be such that S and R are both integral domains. Suppose that $1_{S} \neq 1_{R}$. Let a be a nonzero element of S. Then in R we have $1_{R}(a)=a=1_{S}(a)$. But R is an integral domain, so multiplicative cancellation is valid, implying that $1_{R}=1_{S}$.
- (Section 3.2 Problem 26) Let S be a subring of a ring R. Consider an element $s \in S$. Then $s+0_{s}=s$ and in $R s+0_{R}=s$. So $s+0_{R}=s+0_{S}$, implying that $0_{R}=0_{S}$.

