
Homework 5 Solutions
MTH 310

• (Section 3.2 Problem 2) We assume associativity and distributivity. Closure under
addition and multiplication is clear from the tables. We further observe from the
tables that addition commutes (in particular, the addition table is symmetric across
the diagonal) and that 0 is a zero element. We further note that e+e = b+b = c+c = 0,
so every element is its own additive inverse. Finally, we observe that e functions as a
multiplicative identity. Hence R is a ring. Multiplication commutes (the multiplication
table is symmetric across the diagonal). However R is not a field; we perceive that b
and c do not have multiplicative inverses.

• (Section 3.2 Problem 6)(a) Let R = {3n :∈ Z}. We perceive that 3n+3m = 3(n+m) ∈
R, so R is closed under addition. Morevoer we see 3n(3m) = 3(3nm), so R is closed
under multiplication. In addition, 0 = 3(0), so 0 ∈ R; finally, if 3n ∈ R, then
−3n = 3(−n) ∈ R, so R is closed under taking additive inverses. We conclude that R
is a subring of Z.

(b) The argument above with 3 replaced by k throughout shows that {kn : n ∈ Z} is
a subring of Z.

• (Section 6 Problem 11) (a) We wish to show the subset S of M(R) consisting of matrices
of the form (

a a
b b

)
is a subring of M(R). First, the zero element of M(R) is an element of S by letting
a = b = 0. Second, we perceive that S is closed under taking additive inverses, since

−
(
a a
b b

)
=

(
−a −a
−b −b

)
.

Next, S is closed under addition, since(
a a
b b

)
+

(
c c
d d

)
=

(
a + c a + c
b + d b + d

)
Finally, and most interestingly, S is closed under multiplication since(

a a
b b

)
×
(
c c
d d

)
=

(
ac + ad ac + ad
bc + bd bc + bd

)
(b,c) We observe that (

a a
b b

)(
1 1
0 0

)
=

(
a a
b b

)



for any a and b but (
1 1
0 0

)(
2 2
1 1

)
=

(
3 3
0 0

)
Hence J is a right identity but not a left identity.

• (Section 3.1 Problem 17) We let ab = 0 in Z and addition be unchanged. First,
the axioms for addition plainly continue to hold. Second, closure of the ring under
multiplication is obvious, since 0 ∈ Z. As for associativity, for a, b, c ∈ Z, we have
a(bc) = a(0) = 0 = (0)c = (ab)c. Finally, for distributivity, we observe that a(b + c) =
0 = 0 + 0 = ab + ac and likewise (a + b)c = 0 = 0 + 0 = ac + bc.

• (Section 3.1 Problem 19) This is a straightforward computation; for example we have
E ·D = A.

• (Section 3.1 Problem 24) We take our operations of addition to be a ⊕ b = a + b − 1
and a� b = ab− (a+ b) + 2. Clearly this is additively and multiplicatively closed. We
check the remaining six ring axioms.

(2) (Associative Addition) For a, b, c ∈ Z, we have

a⊕ (b⊕ c) = a + (b⊕ c)− 1 = (a + b + c− 1)− 1 = a + b + c− 2

(a⊕ b)⊕ c = (a⊕ b) + c− 1 = (a + b− 1) + c− 1 = a + b + c− 2

We perceive that a⊕ (b⊕ c) = (a⊕ b)⊕ c.

(3) (Commutative Addition) We perceive that a⊕ b = a + b− 1 = b + a− 1 = b⊕ a.

(4) (Additive Identity) We perceive that a⊕1 = a+1−1 = a and 1⊕a = 1+a−1 = a
for all a ∈ Z. Hence the additive identity is 1.

(5) (Additive Inverses) We perceive that for a ∈ Z, we have a⊕(2−a) = a+(2−a)−1 =
1. So the additive inverse of a is 2− a.

(7) (Associative Multiplication) For a, b, c ∈ Z, we have

a� (b� c) = a� (bc− (b + c) + 2)

= a(bc− b− c + 2)− a− (bc− b− c + 2) + 2

= abc− ab− ac− bc + a + b + c.

(a� b)� c = (a� b)c− a� b− c + 2

= (ab− a− b + 2)c− (ab− a− b + 2) + 2

= abc− ac− bc− ab + a + b + c.

We perceive that a� (b� c) = (a� b)� c.



(8) (Distributivity) We check below that multiplication commutes, so it suffices to show
that a� (b⊕ c) = (a� b)⊕ (a� c)

a� (b⊕ c) = a� (b + c− 1)

= a(b + c− 1)− a− (b + c− 1) + 2

= ab + ac− 2a− b− c + 3

(a� b)⊕ (a� c) = (ab− a− b + 2)⊕ (ac− a− c + 2)

= (ab− a− b + 2) + (ac− a− c + 2)− 1

= ab + ac− 2a− b− c + 3

We claim that in addition these operations make Z into an integral domain. There are
three things to check.

(Commutative Multiplication) We observe that a�b = ab−a−b+2 = ba−b−a+2 =
b� a.

(Multiplicative Identity) We observe that 2� a = 2a− 2− a + 2 = a = a� 2. So 2 is
the multiplicative identity.

(No zero divisors) Suppose that a � b = 1. Then we have ab − a − b + 2 = 1, or
ab − a − b + 1 = 0. This factors as (a − 1)(b − 1) = 0, so we see that either a = 1 or
b = 1. Since 1 is the zero element of Z with this notion of addition, we see this ring
has no product of two nonzero elements equal to zero.

• (Section 3.1 Problem 33) Most of the axioms follow directly from the fact that R and
S are rings. Most interestingly, the additive identity of R× S is (0R, 0S), the additive
inverse of an element (r, s) in R×S is −(r, s) = (−r,−s), and if R and S have identity,
the identity of R× S is (1R, 1S).

• (Section 3.2 Problem 1) In a general ring we have (a + b)(a − b) = a2 − ab + ba − b2

and (a + b)3 = a3 + aba + ba2 + b2a + a2b + ab2 + bab + b3. In a commutative ring we
have (a + b)(a− b) = a2 − b2 and (a + b)3 = a3 + 3a2b + 3ab2 + b3.

• (Section 3.2 Problem 3) (a) Four of the idempotents in M(R) are(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
3 1

)
.

This is not a complete list.

(b) Direct computation shows that the idempotents in Z12 are 1 and 4.

• (Section 3.2 Problem 5) (a) Suppose that 01 and 02 are both additive identity elements
in some ring R. Then for a ∈ R, a + 01 = a = a + 02. But since a + 01 = a + 02, using



additive cancellation we perceive that 01 = 02. Ergo additive identities are unique.

(b) Let R be a ring with identity. Suppose that 1a and 1b are both multiplicative
identities in R. Then since 1a is a multiplicative identity, 1a · 1b = 1b and similarly
since 1b is a multiplicative identity, 1a · 1b = 1a. So 1a = 1b.

(c) Suppose that a is a unit a ring with identity R with inverses u and v. Then au = 1.
But then v(au) = v(1), implying that (va)u = v. Since va = 1, we see that u = v. So
a unit can have only one inverse.


