Homework 4 Solutions

MTH 310

- (2.3 Problem 1) We recall that the units in \mathbb{Z}_n are exactly those *a* such that (a, n) = 1. So in \mathbb{Z}_7 the units are 1, 2, 3, 4, 5, 6; in \mathbb{Z}_8 the units are 1, 3, 5, 7; in \mathbb{Z}_9 the units are 1, 2, 4, 5, 7, 8; in \mathbb{Z}_1 0 the units are 1, 3, 7, 9.
- (2.3 Problem 2) There are no zero divisors in Z₇ because 7 is prime. The zero divisors in Z₈ are 2, 4, 6, because 2(4) = 8 = 0 and 6(4) = 24 = 0. The zero divisors in Z₉ are 3, 6 since 3(6) = 18 = 0. The zero divisors in Z₁0 are 2, 4, 5, 6, 8 because 2(5) = 10 = 0, 4(5) = 20 = 0, 6(5) = 30 = 0, and 8(5) = 40 = 0.
- (2.3 Problem 9) (a) Let a be a unit in \mathbb{Z}_n ; say au = ua = 1. Suppose that ab = 0. But multiplying by u we see that uab = u(0), implying that b = 0. Ergo a is not a zero divisor.

(b) The above shows that if a is a zero divisor in \mathbb{Z}_n , it certainly cannot be a unit.

- (2.3 Problem 10) We use bracket notation to distinguish congruence classes from integers. Problem 9 shows that $[a] \neq [0]$ in \mathbb{Z}_n is at most one of a unit and a zero divisor. Suppose [a] is not a unit, then (a, n) = d > 1. Write a = dk and n = ds for 0 < s < n. In particular $[s] \neq [0]$ in \mathbb{Z}_n . Then we see as = dks = nk, so in \mathbb{Z}_n , [a][s] = [0]. Hence if [a] is not a unit, it is a zero divisor. This implies that a nonzero element of \mathbb{Z}_n is exactly one of a unit or a zero divisor.
- (Appendix B Problem 13) (a) Consider the functions
 - $-f: B \to C$ where f(1) = f(2) = a, f(3) = b, f(4) = c.
 - $-g: B \to C$ where g(1) = a, g(2) = g(3) = b, g(4) = c.
 - $-h: B \to C$ where h(1) = a, h(2) = b, h(3) = h(4) = c.
 - $j: B \to C$ where j(1) = j(4) = a, j(2) = b, j(3) = c.

(b) Consider the functions

- f: C → B where f(a) = 1, f(b) = 2, f(c) = 3.- g: C → B where g(a) = 1, g(b) = 3, g(c) = 4.
- $-h: C \rightarrow B$ where h(a) = 1, h(b) = 2, h(c) = 4.
- $-j: C \rightarrow B$ where j(a) = 2, j(b) = 3, j(c) = 3.
- (c) The complete set of bijections from C to itself is:

$$-f: C \to C$$
 where $f(a) = a, f(b) = b, f(c) = c$.

- $-g: C \to C \text{ where } g(a) = a, g(b) = c, g(c) = b.$ $-h: C \to C \text{ where } h(a) = b, h(b) = a, h(c) = c.$ $-j: C \to C \text{ where } j(a) = b, j(b) = c, j(c) = a.$ $-i: C \to C \text{ where } i(a) = c, i(b) = b, i(c) = a.$ $-k: C \to C \text{ where } k(a) = c, k(b) = a, h(c) = b.$
- (25)(a) Let $f: \mathbb{Z} \to \mathbb{Z}$ be f(x) = 2x. We observe that if $f(x_1) = f(x_2)$, then $2x_1 = 2x_2$, implying after dividing by 2 that $x_1 = x_2$, so f is injective. The remaining three are extremely similar instances of solving an equality.
- (26) Let $a \in \mathbb{R}$. Then $f(a^{\frac{1}{3}}) = a$, so f is surjective. Parts (b) and (c) are similar. For (d), we observe that \mathbb{Q} is definitionally the set of numbers that can be written as a/b for some $(a, b) \in \mathbb{Z}$.
- (27) (a) Let $f: B \to C$ and $g: C \to D$ be both injective. Then suppose that $g \circ f(b_1) = g \circ f(b_2)$. We have $g(f(b_1)) = g(f(b_2))$. By injectivity of $g, f(b_1) = f(b_2)$; by injectivity of $f, b_1 = b_2$. Ergo $g \circ f(b_1) = g \circ f(b_2)$ implies that $b_1 = b_2$, and therefore $g \circ f$ is injective.

(b) Let $f: B \to C$ and $g: C \to D$ be both surjective. Then say $d \in D$. By surjectivity of g, there is some $c \in C$ such that g(c) = d; by surjectivity of f, there is some b such that f(b) = c. We conclude that $g \circ f(b) = d$. As d was arbitrary $g \circ f$ is surjective.

• (28) (a) Let $f: B \to C$ and $g: C \to D$ such that $g \circ f: B \to D$ is injective. Let x_1, x_2 be any two elements of B such that $f(x_1) = f(x_2)$. Then $g \circ f(x_1) = g \circ f(x_2)$. Since $g \circ f$ is injective, it follows that $x_1 = x_2$. Hence f is injective.

(b) Let f be the function $f: \{0\} \to \{1, 2\}$ such that f(0) = 1 and let g be the function $g: \{1, 2\} \to \{3\}$ such that g(1) = g(2) = 3. Then g is not injective, since g(1) = g(2), but $g \circ f: \{0\} \to \{3\}$ is the function given by $g \circ f(0) = 3$, hence is injective.