Homework 4 Solutions

MTH 310

- (2.3 Problem 1) We recall that the units in \mathbb{Z}_{n} are exactly those a such that $(a, n)=1$. So in \mathbb{Z}_{7} the units are $1,2,3,4,5,6$; in \mathbb{Z}_{8} the units are $1,3,5,7$; in \mathbb{Z}_{9} the units are $1,2,4,5,7,8$; in $\mathbb{Z}_{1} 0$ the units are $1,3,7,9$.
- (2.3 Problem 2) There are no zero divisors in \mathbb{Z}_{7} because 7 is prime. The zero divisors in \mathbb{Z}_{8} are $2,4,6$, because $2(4)=8=0$ and $6(4)=24=0$. The zero divisors in \mathbb{Z}_{9} are 3,6 since $3(6)=18=0$. The zero divisors in $\mathbb{Z}_{1} 0$ are $2,4,5,6,8$ because $2(5)=10=0$, $4(5)=20=0,6(5)=30=0$, and $8(5)=40=0$.
- (2.3 Problem 9) (a) Let a be a unit in \mathbb{Z}_{n}; say $a u=u a=1$. Suppose that $a b=0$. But multiplying by u we see that $u a b=u(0)$, implying that $b=0$. Ergo a is not a zero divisor.
(b) The above shows that if a is a zero divisor in \mathbb{Z}_{n}, it certainly cannot be a unit.
- (2.3 Problem 10) We use bracket notation to distinguish congruence classes from integers. Problem 9 shows that $[a] \neq[0]$ in \mathbb{Z}_{n} is at most one of a unit and a zero divisor. Suppose $[a]$ is not a unit, then $(a, n)=d>1$. Write $a=d k$ and $n=d s$ for $0<s<n$. In particular $[s] \neq[0]$ in \mathbb{Z}_{n}. Then we see $a s=d k s=n k$, so in $\mathbb{Z}_{n},[a][s]=[0]$. Hence if $[a]$ is not a unit, it is a zero divisor. This implies that a nonzero element of \mathbb{Z}_{n} is exactly one of a unit or a zero divisor.
- (Appendix B Problem 13) (a) Consider the functions
$-f: B \rightarrow C$ where $f(1)=f(2)=a, f(3)=b, f(4)=c$.
$-g: B \rightarrow C$ where $g(1)=a, g(2)=g(3)=b, g(4)=c$.
$-h: B \rightarrow C$ where $h(1)=a, h(2)=b, h(3)=h(4)=c$.
$-j: B \rightarrow C$ where $j(1)=j(4)=a, j(2)=b, j(3)=c$.
(b) Consider the functions
$-f: C \rightarrow B$ where $f(a)=1, f(b)=2, f(c)=3$.
$-g: C \rightarrow B$ where $g(a)=1, g(b)=3, g(c)=4$.
$-h: C \rightarrow B$ where $h(a)=1, h(b)=2, h(c)=4$.
$-j: C \rightarrow B$ where $j(a)=2, j(b)=3, j(c)=3$.
(c) The complete set of bijections from C to itself is:
$-f: C \rightarrow C$ where $f(a)=a, f(b)=b, f(c)=c$.
- $g: C \rightarrow C$ where $g(a)=a, g(b)=c, g(c)=b$.
- $h: C \rightarrow C$ where $h(a)=b, h(b)=a, h(c)=c$.
$-j: C \rightarrow C$ where $j(a)=b, j(b)=c, j(c)=a$.
$-i: C \rightarrow C$ where $i(a)=c, i(b)=b, i(c)=a$.
$-k: C \rightarrow C$ where $k(a)=c, k(b)=a, h(c)=b$.
- (25)(a) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be $f(x)=2 x$. We observe that if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $2 x_{1}=2 x_{2}$, implying after dividing by 2 that $x_{1}=x_{2}$, so f is injective. The remaining three are extremely similar instances of solving an equality.
- (26) Let $a \in \mathbb{R}$.Then $f\left(a^{\frac{1}{3}}\right)=a$, so f is surjective. Parts (b) and (c) are similar. For (d), we observe that \mathbb{Q} is definitionally the set of numbers that can be written as a / b for some $(a, b) \in \mathbb{Z}$.
- (27) (a) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ be both injective. Then suppose that $g \circ f\left(b_{1}\right)=$ $g \circ f\left(b_{2}\right)$. We have $g\left(f\left(b_{1}\right)\right)=g\left(f\left(b_{2}\right)\right)$. By injectivity of $g, f\left(b_{1}\right)=f\left(b_{2}\right)$; by injectivity of $f, b_{1}=b_{2}$. Ergo $g \circ f\left(b_{1}\right)=g \circ f\left(b_{2}\right)$ implies that $b_{1}=b_{2}$, and therefore $g \circ f$ is injective.
(b) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ be both surjective. Then say $d \in D$. By surjectivity of g, there is some $c \in C$ such that $g(c)=d$; by surjectivity of f, there is some b such that $f(b)=c$. We conclude that $g \circ f(b)=d$. As d was arbitrary $g \circ f$ is surjective.
- (28) (a) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ such that $g \circ f: B \rightarrow D$ is injective. Let x_{1}, x_{2} be any two elements of B such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. Since $g \circ f$ is injective, it follows that $x_{1}=x_{2}$. Hence f is injective.
(b) Let f be the function $f:\{0\} \rightarrow\{1,2\}$ such that $f(0)=1$ and let g be the function $g:\{1,2\} \rightarrow\{3\}$ such that $g(1)=g(2)=3$. Then g is not injective, since $g(1)=g(2)$, but $g \circ f:\{0\} \rightarrow\{3\}$ is the function given by $g \circ f(0)=3$, hence is injective.

