Homework 3 Solutions

MTH 310
2. Suppose for the sake of contradiction that there are finitely many primes p_{1}, \ldots, p_{k}. Consider the number $a=p_{1} p_{2} \ldots p_{k}+1$. Since $(n, n+1)=1$ for all n, we perceive that $\left(p_{1} \ldots p_{k}, p_{1} \ldots p_{k}+1\right)=1$, implying that a is not divisible by any of the primes p_{1}, \ldots, p_{k}. Since every integer has a prime factorization, this is impossible. So there must be infinitely many prime numbers.
3. Suppose that a and b are integers such that $a \equiv b(\bmod p)$ for every positive prime p. This implies that the difference $a-b$ is divisible by p for every prime p. But there is only one number divisible by every prime, namely 0 .
4. Suppose that $[a]=[1]$ in \mathbb{Z}_{n}. Then $a-1=n k$ for some $k \in \mathbb{Z}$. In particular we have $a+n(-k)=1$, so 1 may be written as a linear combination of a and n. We saw on the quiz that this implies that $(a, n)=1$. However, conversely, observe that $(5,6)=1$ but $[5] \neq[1]$ in \mathbb{Z}_{6}.
5. (a) We see that $10^{n}=1+9\left(1+10+\cdots+10^{n-1}\right)$. Ergo $10^{n} \equiv 1(\bmod 9)$.
(b) Let $a=a_{0}+a_{1}(10)+a_{2}(100)+\cdots+a_{n}\left(10^{n}\right)$. Then by part (a), we see that

$$
a=a_{0}+a_{1}(10)+a_{2}(100)+\cdots+a_{n}\left(10^{n}\right) \equiv a_{1}+a_{2}(1)+\cdots+a_{n}
$$

as desired.
6. The solutions to $[x]^{2} \oplus 3 \otimes[x] \oplus[2]=[0]$ in \mathbb{Z}_{6} are [1],[2], [4], and [5] (as one can see from writing out the compuations).
7. (a) In \mathbb{Z}_{7} we perceive that $[3]^{1}=[3],[3]^{2}=[2],[3]^{3}=[6],[3]^{4}=[4],[3]^{5}=[5]$, $[3]^{6}=[1]$.
(b) In \mathbb{Z}_{5} we perceive that $[2]^{1}=[2],[2]^{2}=[4],[2]^{3}=[3],[2]^{4}=[1]$.
(c) In \mathbb{Z}_{6} this is impossible, as we see that

- $[2]^{1}=[2],[2]^{2}=[4],[2]^{3}=[2], \ldots$
- $[3]^{1}=[3],[3]^{2}=[3], \ldots$
- $[4]^{1}=[4],[4]^{2}=[4], \ldots$
- $[5]^{1}=[5],[5]^{2}=[5], \ldots$
(d) i. We may compute directly that the solutions to $x^{2}+x=[0]$ in \mathbb{Z}_{5} are [0] and [4].
ii. We may compute directly that the solutions to $x^{2}+x=[0]$ in \mathbb{Z}_{6} are [0], [2], [3], [5].
iii. Let p be prime, and let $[a]$ be a solution to $x^{2}+x=[0]$ in \digamma_{p}, chosen so that $0 \leq a<p$. Then we observe that $a^{2}+a=k p$ for some integer k. So we have $p \mid a(a+1)$. Since p is a prime, this implies that $p \mid a$ or $p \mid a+1$. If $p \mid a$, we see that $a=0$. If $p \mid a+1$, we see that $a+1=p$, so $a=p-1$. So the solutions to $x^{2}+x=[0]$ are exactly [0] and $[p-1]$.

8. We observe that in \mathbb{Z}_{n}, it is always the case that $n \odot[x]=[n x]=[0]$ for all $[x]$.

In \mathbb{Z}_{2}, we have $([a] \oplus[b])^{2}=[a]^{2} \oplus(2 \odot[x])+[b]^{2}=[a]^{2} \oplus[b]^{2}$.

In \mathbb{Z}_{3}, we have $([a] \oplus[b])^{3}=[a]^{3} \oplus\left(3 \odot[a]^{2} \odot[b]\right)+\left(3 \odot[a] \odot[b]^{2}\right) \oplus[b]^{3}=[a]^{2} \oplus[b]^{3}$.

In \mathbb{Z}_{5}, we have

$$
\begin{aligned}
([a] \oplus[b])^{5} & =[a]^{5}+\left(5 \odot[a]^{4} \odot[b]\right) \oplus\left(20 \odot[a]^{3} \odot[b]^{2}\right) \oplus\left(20 \odot[a]^{2} \odot[b]^{3}\right) \oplus\left(5 \odot[a] \odot[b]^{4}\right) \oplus[a]^{5} \\
& =[a]^{5} \oplus[b]^{5} .
\end{aligned}
$$

We conclude that probably in \mathbb{Z}_{7} we have $([a]+[b])^{7}=[a]^{7} \oplus[b]^{7}$.

