Homework 3 Solutions

MTH 310

- 2. Suppose for the sake of contradiction that there are finitely many primes p_1, \ldots, p_k . Consider the number $a = p_1 p_2 \ldots p_k + 1$. Since (n, n + 1) = 1 for all n, we perceive that $(p_1 \ldots p_k, p_1 \ldots p_k + 1) = 1$, implying that a is not divisible by any of the primes p_1, \ldots, p_k . Since every integer has a prime factorization, this is impossible. So there must be infinitely many prime numbers.
- 3. Suppose that a and b are integers such that $a \equiv b \pmod{p}$ for every positive prime p. This implies that the difference a - b is divisible by p for every prime p. But there is only one number divisible by every prime, namely 0.
- 4. Suppose that [a] = [1] in \mathbb{Z}_n . Then a 1 = nk for some $k \in \mathbb{Z}$. In particular we have a + n(-k) = 1, so 1 may be written as a linear combination of a and n. We saw on the quiz that this implies that (a, n) = 1. However, conversely, observe that (5, 6) = 1 but $[5] \neq [1]$ in \mathbb{Z}_6 .
- 5. (a) We see that $10^n = 1 + 9(1 + 10 + \dots + 10^{n-1})$. Ergo $10^n \equiv 1 \pmod{9}$.
 - (b) Let $a = a_0 + a_1(10) + a_2(100) + \dots + a_n(10^n)$. Then by part (a), we see that

$$a = a_0 + a_1(10) + a_2(100) + \dots + a_n(10^n) \equiv a_1 + a_2(1) + \dots + a_n$$

as desired.

- 6. The solutions to $[x]^2 \oplus 3 \otimes [x] \oplus [2] = [0]$ in \mathbb{Z}_6 are [1], [2], [4], and [5] (as one can see from writing out the computations).
- 7. (a) In \mathbb{Z}_7 we perceive that $[3]^1 = [3], [3]^2 = [2], [3]^3 = [6], [3]^4 = [4], [3]^5 = [5], [3]^6 = [1].$
 - (b) In \mathbb{Z}_5 we perceive that $[2]^1 = [2], [2]^2 = [4], [2]^3 = [3], [2]^4 = [1].$
 - (c) In \mathbb{Z}_6 this is impossible, as we see that
 - $[2]^1 = [2], [2]^2 = [4], [2]^3 = [2], \dots$
 - $[3]^1 = [3], [3]^2 = [3], \dots$
 - $[4]^1 = [4], [4]^2 = [4], \ldots$
 - $[5]^1 = [5], [5]^2 = [5], \dots$
 - (d) i. We may compute directly that the solutions to $x^2 + x = [0]$ in \mathbb{Z}_5 are [0] and [4].
 - ii. We may compute directly that the solutions to $x^2 + x = [0]$ in \mathbb{Z}_6 are [0], [2], [3], [5].

- iii. Let p be prime, and let [a] be a solution to $x^2 + x = [0]$ in \mathbb{F}_p , chosen so that $0 \le a < p$. Then we observe that $a^2 + a = kp$ for some integer k. So we have p|a(a+1). Since p is a prime, this implies that p|a or p|a+1. If p|a, we see that a = 0. If p|a+1, we see that a+1=p, so a = p-1. So the solutions to $x^2 + x = [0]$ are exactly [0] and [p-1].
- 8. We observe that in \mathbb{Z}_n , it is always the case that $n \odot [x] = [nx] = [0]$ for all [x].

In
$$\mathbb{Z}_2$$
, we have $([a] \oplus [b])^2 = [a]^2 \oplus (2 \odot [x]) + [b]^2 = [a]^2 \oplus [b]^2$

In
$$\mathbb{Z}_3$$
, we have $([a] \oplus [b])^3 = [a]^3 \oplus (3 \odot [a]^2 \odot [b]) + (3 \odot [a] \odot [b]^2) \oplus [b]^3 = [a]^2 \oplus [b]^3$.

In \mathbb{Z}_5 , we have

 $([a] \oplus [b])^5 = [a]^5 + (5 \odot [a]^4 \odot [b]) \oplus (20 \odot [a]^3 \odot [b]^2) \oplus (20 \odot [a]^2 \odot [b]^3) \oplus (5 \odot [a] \odot [b]^4) \oplus [a]^5$ = $[a]^5 \oplus [b]^5.$

We conclude that probably in \mathbb{Z}_7 we have $([a] + [b])^7 = [a]^7 \oplus [b]^7$.