Homework 2 Solutions

MTH 310
2. (a) We observe that

$$
\begin{aligned}
& 5^{2}=25=8(3)+1 \\
& 7^{2}=49=8(6)+1 \\
& 11^{2}=121=8(15)+1 \\
& 27^{2}=729=8(90)+1
\end{aligned}
$$

(b) We conjecture that if we divide an odd square by 8 , the remainder is always 1 .
(c) Observe that by the Division Algorithm, any integer may be written as one of $4 k, 4 k+1,4 k+2,4 k+3$ for suitable k. Clearly $4 k$ and $4 k+2$ are divisible by 2, hence even, so indeed any odd integer a may be written as one of $a=4 k+1$ or $a=4 k+3$ for suitable k. Therefore, the square of an odd integer a takes one of the following two forms:

$$
\begin{aligned}
& a^{2}=(4 k+1)^{2}=16 k^{2}+8 k+1=8\left(2 k^{2}+k\right)+1 \\
& a^{2}=(4 k+3)^{2}=16 k^{2}+24 k+9=8\left(2 k^{2}+3 k+1\right)+1
\end{aligned}
$$

In either case we observe that the remainder when a^{2} divided by 8 is 1 .
3. (a) We observe that $138=24(5)+18$, so $(138,24)=(24,18)$. But $24=18(1)+6$, so $(24,18)=(18,6)$. And $18=6(3)+0$, so we conclude that $(18,6)=6$. Therefore $(138,24)=5$.
(b) We observe that $231=143(1)+88$, so $(231,143)=(143,88)$. But $143=88(1)+55$, so $(143,88)=(88,55)$. And $88=55(1)+33$, so $(88,55)=(55,33)$. And $55=$ $33(1)+22$, so $(55,33)=(33,22)$. Next $33=22(1)+11$, so $(33,22)=(22,11)$. And finally $22=2(11)$, so $(22,11)=11$. We conclude that $(231,143)=11$.
4. (a) We notice that $n+1=n(1)+1$. Therefore $(n, n+1)=(n, 1)=1$ for all n.
(b) First we consider $(n, n+2)$. We see that $n+2=n(1)+2$, implying that $(n, n+2)=(n, 2)$. The possible values of $(n, 2)$ are 1 and 2 depending on whether n is odd or even (respectively).

Next we consider $(n, n+6)$. We observe that $n+6=n(1)+6$, so $(n, n+6)=(n, 6)$. The number $(n, 6)$ could be any positive divisor of 6 , namely $1,2,3$ or 6 .
5. Let a be an integer with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$, so that $a=a_{0}+a_{1}(10)+\cdots+a_{n}\left(10^{n}\right)$. Observe that $10^{i}-1$ is divisible by 3 for all $i>0$. Then we have

$$
\begin{aligned}
a & =a_{0}+a_{1}(10)+a_{2}(100)+\cdots+a_{n}\left(10^{n}\right) \\
& =a_{0}+a_{1}(1+9)+a_{2}(1+99)+\cdots+a_{n}\left(1+\left(10^{n}-1\right)\right) \\
& =\left(a_{0}+a_{1}+a_{2}+\cdots+a_{n}\right)+3\left(3 a_{1}+33 a_{2}+\cdots+\left(\frac{10^{n}-1}{3}\right) a_{n}\right)
\end{aligned}
$$

We see that a is divisible by 3 if and only if the sum $a_{0}+a_{1}+\cdots+a_{n}$ is.
6. Let $d=(a, b)$ and $k=(c a, c d)$. Since d divides both a and b, we see that $c d$ divides both $c a$ and $c b$. Since $c d$ is a common divisor of $c a$ and $c b$, it divides the greatest common divisor of $c a$ and $c b$. So $c d \mid k$. Write $k=c d e$ for some $e>0$. Then we observe that $c d e \mid c a$ and $c d e \mid c b$, implying that $d e \mid a$ and $d e \mid b$. Since $d=(a, b)$, this implies that $d e \mid d$, and in particular that $c d e \mid c d$. So $k \mid c d$. Since k and $c d$ are positive integers such that $k \mid c d$ and $c d \mid k$, we conclude that $k=c d$.
7. First, suppose that p is not prime. Then we may write $p=a b$ such that neither a nor b is ± 1. We may additionally insist that $a>0$. Then we see that $a \mid p$, so $(a, p)=a \neq 1$. Moreover $a \mid p$, so $0<a \leq|p|$; indeed, since $b \neq \pm 1$, we must have $0<a<|p|$. Hence it cannot be the case that a is divisible by p. Therefore neither $(a, p)=1$ or $p \mid a$ is true.

Conversely, suppose that p is prime. Given an integer a, if it is not the case that $(a, p)=1$, then since p has only two positive divisors, it must be the case that $(a, p)=$ $|p|$. But this implies that $p \mid a$. Hence for every integer a, either $(a, p)=1$ or $p \mid a$.
8. We check the congruences of the three potential ISBN numbers.
(a) We see $10(3)+9(5)+8(4)+7(0)+6(9)+5(0)+4(5)+3(1)+2(8)+9=209=11(19)$, so $3-540-90518-9$ is a valid ISBN number.
(b) We see $10(0)+9(0)+8(3)+7(1)+6(1)+5(0)+4(5)+3(5)+2(9)+5=95$ is not divisible by 11 , so $0-031-10559-5$ is not a valid ISBN number.
(c) We see $10(0)+9(3)+8(8)+7(5)+6(4)+5(9)+4(5)+3(9)+2(6)+10=264=11(24)$, so $0-385-49596-X$ is a valid ISBN number.
9. (a) Observe that $5 \equiv 1(\bmod 4)$. Since congruence is preserved by taking products, we may raise both sides of the equation to the 2000th power, obtaining $5^{2000} \equiv$ $1^{2000} \equiv 1(\bmod 4)$. We conclude that in \mathbb{Z}_{4}, we have $\left[5^{2000}\right]=[1]$.
(b) Observe that $4 \equiv-1(\bmod 5)$. So as previously we may compute that $4^{2001} \equiv$ $(-1)^{2001} \equiv-1 \equiv 4(\bmod 5)$. We conclude that $\left[4^{2001}\right]=[4]$ in \mathbb{Z}_{5}.
10. (a) This is false. We observe that $(2)(3) \equiv 0(\bmod 6)$, but neither 2 nor 3 is congruent to 0 modulo 6 . So $a b \equiv 0(\bmod n)$ does not necessarily imply that one of a and b is congruent to $0 \bmod n$.
(b) Let n be prime, and suppose $a b \equiv 0(\bmod n)$. Then we know $n \mid(a b-0)$, implying that $n \mid a b$. But if a prime integer divides a product, it divides at least one of the factors. Suppose $n \mid a$. Then $n \mid(a-0)$, so $a \equiv 0(\bmod n)$. Similarly if $n \mid b$, $b \equiv 0(\bmod n)$. So if n is prime, $a b \equiv 0(\bmod n)$ implies that at least one of $a \equiv 0(\bmod n)$ and $b \equiv 0(\bmod n)$ is true.

