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3. • Let x ∈ A ∪ (B ∪ C). Then either x ∈ A or x ∈ B ∪ C. In the first case, we
see that since x ∈ A, it follows that x is also an element of A ∪ B and A ∪ C, so
x ∈ (A ∪ B) ∪ (A ∪ C). In the second case, ic x ∈ B ∪ C, then either x ∈ B or
x ∈ C. If x ∈ B, x ∈ A ∪B; similarly if x ∈ C, x ∈ A ∪ C. So x is an element of
at least one of A ∪ B and A ∪ C, implying that x ∈ (A ∪ B) ∪ (A ∪ C). As x as
arbitary, A ∪ (B ∪ C) ⊆ (A ∪B) ∪ (A ∪ C).

Conversely suppose x ∈ (A∪B)∪ (A∪C). Then either x ∈ A∪B or x ∈ A∪C.
There are two possibilities, x ∈ A and x /∈ A. If x ∈ A, then x ∈ A ∪ (B ∪ C).
If x /∈ A, then if x ∈ A ∪ B, we must have x ∈ B, and if x ∈ A ∪ C, we must
have x ∈ C. So we perceive that x is an element of at least one of B and C,
implying that x ∈ B ∪ C. Hence x ∈ A ∪ (B ∪ C). Since x was arbitrary,
(A ∪B) ∪ (A ∪ C) ⊆ A ∪ (B ∪ C). We conclude that the two sets are equal.

• Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C, implying that either x ∈ B or
x ∈ C. If x ∈ B, then x ∈ A ∩ B; if x ∈ C, then x ∈ A ∩ C. In either eventu-
ality x ∈ (A∩B)∪(A∩C). Since x was arbitrary, A∩(B∪C) ⊆ (A∩B)∪(A∩C).

Conversely let x ∈ (A ∩ B) ∪ (A ∩ C). Then either x ∈ A ∩ B or x ∈ A ∩ C.
If x ∈ A ∩ B, then x ∈ A and x ∈ B, implying that in particular x ∈ A and
x ∈ B ∪ C, so x ∈ A ∩ (B ∪ C). Similarly if x ∈ A ∩ C then x ∈ A ∩ (B ∪ C).
Since x was arbitrary, (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). We conclude that the
two sets are equal.

4. Let

A = {2x : x ∈ Z} A′ = {x ∈ Z : 4|x2} A′′ = {x ∈ Z : (−1)x = 1}

First we show A = A′. Now if y ∈ A, y = 2x for some integer x, so y2 = 4x2 is divisible
by 4. Hence y ∈ A′. So A ⊂ A′. In the other direction, suppose y /∈ A. Then by
the Division Algorithm, y = 2k + 1 for some k ∈ Z. Then y2 = 4k2 + 4k + 1, which
is certainly not divisible by 4. So any element which is not in A is also not in A′,
implying that A′ ⊂ A. Hence A = A′.

Next we show that A = A′′. First, if y ∈ A, then y = 2x for some integer x, so
(−1)y = (−1)2x = ((−1)2)x = 1x = 1, so y ∈ A′. Hence A ⊂ A′.



Conversely if y is not in A, then as previously y = 2k + 1 for some integer k, and
(−1)y = (−1)2k+1 = (−1)2k(−1) = (1)(−1) = −1, so y is not in A′′. Hence A′′ ⊂ A.
So A = A′′.

It follows that A = A′ = A′′.

5. (a) 241 = 17(13) + 3.

(b) −241 = 17(−14) + 14.

(c) 0 = 17(0) + 0.

6. We observe that by the Division Algorithm any integer a can be written as on of 3q,
3q + 1, or 3q + 2. We look at each of these cases separately.

(3q)2 = 9q2 = 3(3q2) = 3k

(3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1 = 3k + 1

(3q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1 = 3k + 1

So we see that any integer square a2 may be written in the form 3k or 3k + 1.

7. First, suppose a and c leave the same remainder when divided by n. Then we have
a = nq1 + r and c = nq2 + r. In particular a − c = nq1 + r − (nq2 + r) = n(q1 − q2).
So n|(a− c).

Conversely, suppose that n|(a − c). Let a − c = nk. Use the Division Algorithm to
write a = nq1 + r1 and c = nq2 + r2 for 0 ≤ r1, r2 < n. Then we see that

nk = (nq1 + r1)− (nq2 − r2)

nk = n(q1 − q2) + (r1 − r2)

n(k + q2 − q1) = r1 − r2

But 0 ≤ r1 < n and −n < −r2 ≤ 0, so in fact −n < r1 − r2 < n. But the only integer
divisible by n in that range is 0. So r1 = r2 as desired.

8. We prove an extended version of the Division Algorithm. If b > 0, this is just the
actual Division Algorithm. So let b < 0. Given a, use the ordinary Division Algorithm
to divide −a by |b|, obtaining −a = |b|q + r for some 0 ≤ r < 0. Multiplying
by −1 we see that a = bq − r. If r = 0 we are done. Otherwise we observe that
a = bq − r = b(q + 1) + (|b| − r). We observe that since b < −r ≤ 0, we have
|b| + b = 0 < |b| − r < |b|. So setting q′ = q + 1, we have written a = bq′ + r for
0 ≤ r < |b| as desired. Uniqueness follows by the proof of uniqueness in the Division
Algorithm (which did not importantly use the sign of b).


