Homework 1 Solutions

MTH 310

3. • Let $x \in A \cup (B \cup C)$. Then either $x \in A$ or $x \in B \cup C$. In the first case, we see that since $x \in A$, it follows that x is also an element of $A \cup B$ and $A \cup C$, so $x \in (A \cup B) \cup (A \cup C)$. In the second case, ic $x \in B \cup C$, then either $x \in B$ or $x \in C$. If $x \in B$, $x \in A \cup B$; similarly if $x \in C$, $x \in A \cup C$. So x is an element of at least one of $A \cup B$ and $A \cup C$, implying that $x \in (A \cup B) \cup (A \cup C)$. As x as arbitary, $A \cup (B \cup C) \subseteq (A \cup B) \cup (A \cup C)$.

Conversely suppose $x \in (A \cup B) \cup (A \cup C)$. Then either $x \in A \cup B$ or $x \in A \cup C$. There are two possibilities, $x \in A$ and $x \notin A$. If $x \in A$, then $x \in A \cup (B \cup C)$. If $x \notin A$, then if $x \in A \cup B$, we must have $x \in B$, and if $x \in A \cup C$, we must have $x \in C$. So we perceive that x is an element of at least one of B and C, implying that $x \in B \cup C$. Hence $x \in A \cup (B \cup C)$. Since x was arbitrary, $(A \cup B) \cup (A \cup C) \subseteq A \cup (B \cup C)$. We conclude that the two sets are equal.

• Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$, implying that either $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$; if $x \in C$, then $x \in A \cap C$. In either eventuality $x \in (A \cap B) \cup (A \cap C)$. Since x was arbitrary, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Conversely let $x \in (A \cap B) \cup (A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$, implying that in particular $x \in A$ and $x \in B \cup C$, so $x \in A \cap (B \cup C)$. Similarly if $x \in A \cap C$ then $x \in A \cap (B \cup C)$. Since x was arbitrary, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. We conclude that the two sets are equal.

4. Let

$$A = \{2x : x \in \mathbb{Z}\} \qquad A' = \{x \in \mathbb{Z} : 4 | x^2\} \qquad A'' = \{x \in \mathbb{Z} : (-1)^x = 1\}$$

First we show A = A'. Now if $y \in A$, y = 2x for some integer x, so $y^2 = 4x^2$ is divisible by 4. Hence $y \in A'$. So $A \subset A'$. In the other direction, suppose $y \notin A$. Then by the Division Algorithm, y = 2k + 1 for some $k \in \mathbb{Z}$. Then $y^2 = 4k^2 + 4k + 1$, which is certainly not divisible by 4. So any element which is not in A is also not in A', implying that $A' \subset A$. Hence A = A'.

Next we show that A = A''. First, if $y \in A$, then y = 2x for some integer x, so $(-1)^y = (-1)^{2x} = ((-1)^2)^x = 1^x = 1$, so $y \in A'$. Hence $A \subset A'$.

Conversely if y is not in A, then as previously y = 2k + 1 for some integer k, and $(-1)^y = (-1)^{2k+1} = (-1)^{2k}(-1) = (1)(-1) = -1$, so y is not in A". Hence $A'' \subset A$. So A = A''.

It follows that A = A' = A''.

- 5. (a) 241 = 17(13) + 3.
 - (b) -241 = 17(-14) + 14.
 - (c) 0 = 17(0) + 0.
- 6. We observe that by the Division Algorithm any integer a can be written as on of 3q, 3q + 1, or 3q + 2. We look at each of these cases separately.

$$(3q)^2 = 9q^2 = 3(3q^2) = 3k$$

$$(3q+1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1 = 3k + 1$$

$$(3q+2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1 = 3k + 1$$

So we see that any integer square a^2 may be written in the form 3k or 3k + 1.

7. First, suppose a and c leave the same remainder when divided by n. Then we have $a = nq_1 + r$ and $c = nq_2 + r$. In particular $a - c = nq_1 + r - (nq_2 + r) = n(q_1 - q_2)$. So n|(a - c).

Conversely, suppose that n|(a-c). Let a-c = nk. Use the Division Algorithm to write $a = nq_1 + r_1$ and $c = nq_2 + r_2$ for $0 \le r_1, r_2 < n$. Then we see that

$$nk = (nq_1 + r_1) - (nq_2 - r_2)$$
$$nk = n(q_1 - q_2) + (r_1 - r_2)$$
$$n(k + q_2 - q_1) = r_1 - r_2$$

But $0 \le r_1 < n$ and $-n < -r_2 \le 0$, so in fact $-n < r_1 - r_2 < n$. But the only integer divisible by n in that range is 0. So $r_1 = r_2$ as desired.

8. We prove an extended version of the Division Algorithm. If b > 0, this is just the actual Division Algorithm. So let b < 0. Given a, use the ordinary Division Algorithm to divide -a by |b|, obtaining -a = |b|q + r for some $0 \le r < 0$. Multiplying by -1 we see that a = bq - r. If r = 0 we are done. Otherwise we observe that a = bq - r = b(q + 1) + (|b| - r). We observe that since $b < -r \le 0$, we have |b| + b = 0 < |b| - r < |b|. So setting q' = q + 1, we have written a = bq' + r for $0 \le r < |b|$ as desired. Uniqueness follows by the proof of uniqueness in the Division Algorithm (which did not importantly use the sign of b).