Homework 1 Solutions

MTH 310
3. - Let $x \in A \cup(B \cup C)$. Then either $x \in A$ or $x \in B \cup C$. In the first case, we see that since $x \in A$, it follows that x is also an element of $A \cup B$ and $A \cup C$, so $x \in(A \cup B) \cup(A \cup C)$. In the second case, ic $x \in B \cup C$, then either $x \in B$ or $x \in C$. If $x \in B, x \in A \cup B$; similarly if $x \in C, x \in A \cup C$. So x is an element of at least one of $A \cup B$ and $A \cup C$, implying that $x \in(A \cup B) \cup(A \cup C)$. As x as arbitary, $A \cup(B \cup C) \subseteq(A \cup B) \cup(A \cup C)$.

Conversely suppose $x \in(A \cup B) \cup(A \cup C)$. Then either $x \in A \cup B$ or $x \in A \cup C$. There are two possibilities, $x \in A$ and $x \notin A$. If $x \in A$, then $x \in A \cup(B \cup C)$. If $x \notin A$, then if $x \in A \cup B$, we must have $x \in B$, and if $x \in A \cup C$, we must have $x \in C$. So we perceive that x is an element of at least one of B and C, implying that $x \in B \cup C$. Hence $x \in A \cup(B \cup C)$. Since x was arbitrary, $(A \cup B) \cup(A \cup C) \subseteq A \cup(B \cup C)$. We conclude that the two sets are equal.

- Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in B \cup C$, implying that either $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$; if $x \in C$, then $x \in A \cap C$. In either eventuality $x \in(A \cap B) \cup(A \cap C)$. Since x was arbitrary, $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.

Conversely let $x \in(A \cap B) \cup(A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$, implying that in particular $x \in A$ and $x \in B \cup C$, so $x \in A \cap(B \cup C)$. Similarly if $x \in A \cap C$ then $x \in A \cap(B \cup C)$. Since x was arbitrary, $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$. We conclude that the two sets are equal.
4. Let

$$
A=\{2 x: x \in \mathbb{Z}\} \quad A^{\prime}=\left\{x \in \mathbb{Z}: 4 \mid x^{2}\right\} \quad A^{\prime \prime}=\left\{x \in \mathbb{Z}:(-1)^{x}=1\right\}
$$

First we show $A=A^{\prime}$. Now if $y \in A, y=2 x$ for some integer x, so $y^{2}=4 x^{2}$ is divisible by 4. Hence $y \in A^{\prime}$. So $A \subset A^{\prime}$. In the other direction, suppose $y \notin A$. Then by the Division Algorithm, $y=2 k+1$ for some $k \in \mathbb{Z}$. Then $y^{2}=4 k^{2}+4 k+1$, which is certainly not divisible by 4 . So any element which is not in A is also not in A^{\prime}, implying that $A^{\prime} \subset A$. Hence $A=A^{\prime}$.

Next we show that $A=A^{\prime \prime}$. First, if $y \in A$, then $y=2 x$ for some integer x, so $(-1)^{y}=(-1)^{2 x}=\left((-1)^{2}\right)^{x}=1^{x}=1$, so $y \in A^{\prime}$. Hence $A \subset A^{\prime}$.

Conversely if y is not in A, then as previously $y=2 k+1$ for some integer k, and $(-1)^{y}=(-1)^{2 k+1}=(-1)^{2 k}(-1)=(1)(-1)=-1$, so y is not in $A^{\prime \prime}$. Hence $A^{\prime \prime} \subset A$. So $A=A^{\prime \prime}$.

It follows that $A=A^{\prime}=A^{\prime \prime}$.
5. (a) $241=17(13)+3$.
(b) $-241=17(-14)+14$.
(c) $0=17(0)+0$.
6. We observe that by the Division Algorithm any integer a can be written as on of $3 q$, $3 q+1$, or $3 q+2$. We look at each of these cases separately.

$$
\begin{gathered}
(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)=3 k \\
(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1=3 k+1 \\
(3 q+2)^{2}=9 q^{2}+12 q+4=3\left(3 q^{2}+4 q+1\right)+1=3 k+1
\end{gathered}
$$

So we see that any integer square a^{2} may be written in the form $3 k$ or $3 k+1$.
7. First, suppose a and c leave the same remainder when divided by n. Then we have $a=n q_{1}+r$ and $c=n q_{2}+r$. In particular $a-c=n q_{1}+r-\left(n q_{2}+r\right)=n\left(q_{1}-q_{2}\right)$. So $n \mid(a-c)$.

Conversely, suppose that $n \mid(a-c)$. Let $a-c=n k$. Use the Division Algorithm to write $a=n q_{1}+r_{1}$ and $c=n q_{2}+r_{2}$ for $0 \leq r_{1}, r_{2}<n$. Then we see that

$$
\begin{aligned}
n k & =\left(n q_{1}+r_{1}\right)-\left(n q_{2}-r_{2}\right) \\
n k & =n\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right) \\
n\left(k+q_{2}-q_{1}\right)=r_{1}-r_{2} &
\end{aligned}
$$

But $0 \leq r_{1}<n$ and $-n<-r_{2} \leq 0$, so in fact $-n<r_{1}-r_{2}<n$. But the only integer divisible by n in that range is 0 . So $r_{1}=r_{2}$ as desired.
8. We prove an extended version of the Division Algorithm. If $b>0$, this is just the actual Division Algorithm. So let $b<0$. Given a, use the ordinary Division Algorithm to divide $-a$ by $|b|$, obtaining $-a=|b| q+r$ for some $0 \leq r<0$. Multiplying by -1 we see that $a=b q-r$. If $r=0$ we are done. Otherwise we observe that $a=b q-r=b(q+1)+(|b|-r)$. We observe that since $b<-r \leq 0$, we have $|b|+b=0<|b|-r<|b|$. So setting $q^{\prime}=q+1$, we have written $a=b q^{\prime}+r$ for $0 \leq r<|b|$ as desired. Uniqueness follows by the proof of uniqueness in the Division Algorithm (which did not importantly use the sign of b).

