Homework 1 Solutions

MTH 310

3. e Letze AU(BUC). Then either z € A or x € BUC. In the first case, we
see that since x € A, it follows that x is also an element of AU B and AU C, so
r € (AUB)U(AUC). In the second case, ic x € BU C, then either z € B or
xeC. Ifxe B, xe AU B; similarly if x € C, x € AUC. So z is an element of
at least one of AU B and AU C, implying that + € (AU B)U (AUC). As = as
arbitary, AU(BUC) C (AUB)U(AUC).

Conversely suppose z € (AU B)U(AUC). Then either z € AUBorx € AUC.
There are two possibilities, z € Aand v ¢ A. If z € A, then z € AU (BUC(C).
If ¢ A, then if x € AU B, we must have x € B, and if + € AU C, we must
have z € C. So we perceive that x is an element of at least one of B and C,
implying that + € BU C. Hence x € AU (B UC). Since x was arbitrary,
(AUB)U(AUC) C AU (BUC). We conclude that the two sets are equal.

o Let € AN(BUC). Then z € A and € BUC, implying that either z € B or
reC. Ifxe B, thenx € ANB;if z € C, then x € ANC. In either eventu-
ality x € (ANB)U(ANC). Since x was arbitrary, AN(BUC) C (ANB)U(ANC).

Conversely let z € (AN B)U(ANC). Then either x € ANBorx e AnC.
If r € AN B, then x € A and = € B, implying that in particular z € A and
reBUC,soxe AN(BUC). Similarly if x € ANC then x € AN (BUC).
Since x was arbitrary, (AN B)U (ANC) C AN (BUC). We conclude that the
two sets are equal.

4. Let

A={2z:2€Z} A ={x €Z:4]2*} A'={xeZ:(-1)" =1}

First we show A = A’. Now if y € A, y = 2z for some integer x, so y? = 42 is divisible
by 4. Hence y € A’. So A C A’. In the other direction, suppose y ¢ A. Then by
the Division Algorithm, y = 2k + 1 for some k € Z. Then y? = 4k? + 4k + 1, which
is certainly not divisible by 4. So any element which is not in A is also not in A’,
implying that A’ C A. Hence A = A'.

Next we show that A = A”. First, if y € A, then y = 2z for some integer x, so
(=1 =(-1)*=((-1))*=1"=1,s0 y € A’. Hence A C A’.



Conversely if y is not in A, then as previously y = 2k + 1 for some integer k, and
(=1)Y = (=1)**! = (=1)**(-1) = (1)(=1) = —1, so y is not in A”. Hence A” C A.
So A=A".

It follows that A = A’ = A”.

(a) 241 = 17(13) + 3.
(b) —241 = 17(—14) + 14.
(c) 0 =17(0) +0.

. We observe that by the Division Algorithm any integer a can be written as on of 3q¢,
3q + 1, or 3¢ + 2. We look at each of these cases separately.

(3¢)* = 9¢* = 3(3¢%) = 3k
(B3¢g+1)2=9¢>+6¢g+1=303¢"+2¢)+1=3k+1

(3¢+2)*=9¢+12¢+4=303¢"+4¢+1) +1=3k+1
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So we see that any integer square a® may be written in the form 3% or 3k + 1.

. First, suppose a and c leave the same remainder when divided by n. Then we have
a =ngq +r and ¢ = ngz + r. In particular a —c = ng; +r — (nge + 1) = n(q1 — ¢2).
So n|(a — ¢).

Conversely, suppose that n|(a — ¢). Let a — ¢ = nk. Use the Division Algorithm to
write a = ng; + 1 and ¢ = ngy + 1o for 0 < r1,75 < n. Then we see that

nk = (nq +r1) — (nga — re)
nk =n(q — q2) + (r1 — ra)
n(k+q—qi) =1 — 12

But 0 <r; <nand —n < —ry <0, so in fact —n < r; — ro < n. But the only integer
divisible by n in that range is 0. So r; = ry as desired.

. We prove an extended version of the Division Algorithm. If b > 0, this is just the
actual Division Algorithm. So let b < 0. Given a, use the ordinary Division Algorithm
to divide —a by |b], obtaining —a = |blg + r for some 0 < r < 0. Multiplying
by —1 we see that a = bg — r. If r = 0 we are done. Otherwise we observe that
a=0bg—1 =0bq+ 1)+ (]b| —r). We observe that since b < —r < 0, we have
] +b =0 < |b| =7 < |b|. So setting ¢ = ¢ + 1, we have written a = bg' + r for
0 < r < |b| as desired. Uniqueness follows by the proof of uniqueness in the Division
Algorithm (which did not importantly use the sign of b).



