MTH 254H: Homework 3

Due: September 22, 2017

1. Read Sections 1.5, 2.1-2 in Marsden and Tromba.
2. Do problems 1.3.6, 1.3.8, 1.3.16, 1.3.19, 1.3.22, 1.3.46, 1.4.3, 1.4.5, 1.4.6, 1.4.7, 1.4.10, 1.5.5, 1.5.16 in Marsden and Tromba.
3. Given vectors $\mathbf{v}_{\mathbf{1}}, \cdots \mathbf{v}_{\mathbf{n}}$, a linear combination of these vectors is a sum of the form $\lambda_{1} \mathbf{v}_{\mathbf{1}}+$ $\cdots+\lambda_{n} \mathbf{v}_{\mathbf{n}}$. The set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is said to be linearly dependent if there is some linear combination of the vectors such that $\lambda_{1} \mathbf{v}_{\mathbf{1}}+\cdots \lambda_{n} \mathbf{v}_{\mathbf{n}}=0$, and linearly independent otherwise.

- Is the set $\{(1,2),(2,4)\}$ linearly independent in \mathbb{R}^{2} ? How about the set $\{(1,7),(2,0)\}$?
- Is the set $\{(2,0,1)\}$ linearly independent in \mathbb{R}^{3} ? How about $\{(1,0,4),(7,2,1),(0,2,0)\}$?
- Show that the set of two vectors $\{\mathbf{a}, \mathbf{b}\}$ in \mathbb{R}^{2} is linearly dependent if and only if the 2×2 square matrix with rows $\{\mathbf{a}, \mathbf{b}\}$ has determinant zero. (Hint: This is quite straightforward if you write it out in coordinates.)
- Using the properties of the determinant proved in class, show that if the set of three vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ in \mathbb{R}^{3} is linearly dependent, then the 3×3 square matrix with rows $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ has determinant zero. (The converse is also true but requires either more linear algebra technology or quite a lot of algebra to prove.)

4. A linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be an isometry if for every a $\in \mathbb{R}^{n}$, $f(\mathbf{a}) \cdot f(\mathbf{b})=\mathbf{a} \cdot \mathbf{b}$. This implies, in particular, that the length of $f(\mathbf{a})$ is equal to the norm of \mathbf{a} and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, the angle between $f(\mathbf{a})$ and $f(\mathbf{b})$ is the same as the angle between \mathbf{a} and \mathbf{b}.

- Show that the transformations R_{θ} and F from Question 4 of Homework 2 are isometries.
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry. What possible forms can its matrix with respect to the standard basis take? (Hint: Let $f\left(\mathbf{e}_{\mathbf{1}}\right)=\left(c_{1}, d_{1}\right)$ and $f\left(\mathbf{e}_{\mathbf{2}}\right)=\left(c_{2}, d_{2}\right)$, and work out what restrictions you can place on the numbers c_{1}, d_{1}, c_{2}, and d_{2}.)

Notes on homework prep:

- There will be some discussion of Questions 3 and 4 in section.

