MTH 254H: Homework 2

Due: September 15, 2017

1. Remember that the first twenty-minute quiz is Thursday, September 14 at the beginning of discussion section. It will cover the material through lecture on Friday, September 8; that is, Sections 1.1-2 and Section 1.3 up to the definition of the cross product.
2. Read Sections 1.3-4 in Marsden and Tromba.
3. Do problems 1.2.13, 1.2.16, 1.2.19, 1.2.25, 1.2.26, 1.2.29, 1.2.31, 1.2.34, 1.3.7, 1.3.9, 1.3.10, 1.3.13, 1.3.15 in Marsden and Tromba.
4. A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if it preserves addition and scalar multiplication; that is, if given \mathbf{a}, \mathbf{b} vectors in \mathbb{R}^{n} and $\alpha \in \mathbb{R}$, we have that $f(\mathbf{a}+\mathbf{b})=$ $f(\mathbf{a})+f(\mathbf{b})$ and $f(\alpha \mathbf{a})=\alpha f(\mathbf{a})$.

- Consider a line $\ell(t)=\mathbf{a}+t \mathbf{v}$ in \mathbb{R}^{3} as defined in class. This is a map $\ell: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Under what circumstances is ℓ a linear transformation?
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Show that given $\mathbf{a} \in \mathbb{R}^{2}, f(\mathbf{a})$ is determined by $f(\mathbf{i})$ and $f(\mathbf{j})$. [In other words, if you know that $f((1,0))=\left(c_{1}, d_{1}\right)$ and that $f((0,1))=\left(c_{2}, d_{2}\right)$, show that you can give a formula for $f\left(\left(a_{1}, a_{2}\right)\right)$ in terms of the numbers $a_{1}, a_{2}, c_{1}, c_{2}, d_{1}, d_{2}$.] Under these circumstances, the matrix

$$
\left(\begin{array}{ll}
c_{1} & c_{2} \\
d_{1} & d_{2}
\end{array}\right)
$$

is called the matrix of the linear transformation with respect to the standard basis. Use this to express the formula you found above in terms of matrix multiplication.

- Show that rotation R_{θ} counterclockwise by an angle θ in the plane is a linear transformation, and compute its matrix with respect to the standard basis. Do the same for reflection F across the x-axis.

Notes on homework prep:

- For problems 1.2.29, 1.2.31, and 1.2.34, you will first want to read the subsection entitled "Physical Applications of Vectors" in Section 1.2.
- There will be some discussion of Question 4 in section.

