1. Suppose you know that $f(3)=2$ and $f^{\prime}(3)=7$. Approximately what is $f(2.99)$?
2. Find the absolute maximum and minimum of $g(x)=x^{\frac{3}{4}}-2 x^{\frac{1}{4}}$ over the interval $[0,4]$.
3. On which of the two intervals $[-1,1]$ and $[0,2]$ does $f(x)=x^{\frac{1}{3}}$ satisfy the hypotheses of the Mean Value Theorem? For the interval you picked, find the value of c at which the conclusion of the Mean Value Theorem is true.
4. Consider the function $f(x)=\frac{\sqrt{1+x^{2}}}{x}$. Find its intercepts, asymptotes, symmetry, intervals of increase and decrease, local maxima and minima, and intervals of concavity. Then sketch a graph.
5. Draw a function $f(x)$ such that

- $f(x)$ has a vertical asymptote at $x=2$ and a slant asymptote at $y=x-1$.
- $f^{\prime}(x)$ is positive on $(-\infty,-1)$ and $(3, \infty)$, and negative on $(-1,2)$ and $(2,3)$.
- $f(x)$ is positive on $(-\infty,-3)$ and $(2, \infty)$, and negative on $(-3,2)$.

6. What are the dimensions of the largest rectangle that can be inscribed in the ellipse $4 x^{2}+y^{2}=4$? [Hint: You can optimize the square of the area function.]
7. Give a single-variable function you could optimize to find the point on the curve $\sqrt{x}+\sqrt{y}=1$ closest to $(2,2)$. (Do not actually do the optimization.) What is the range of values of the independent variable you should consider?
8. Estimate the area under the curve $f(x)=\frac{x+1}{3-x}$ over the interval $[-1,2]$ using the left-hand endpoints of three rectangles of equal width. Is your answer an overestimate, underestimate, or not obviously either?
9. What is the derivative of the function $F(x)=\int_{x^{3}}^{3} \sqrt{t^{2}+1} d t$?
10. Find the integral $\int_{4}^{5}\left(\frac{3+x}{\sqrt{x}}+\frac{\pi}{4} \sec \left(\frac{\pi}{4} x\right) \tan \left(\frac{\pi}{4} x\right)\right) d x$.
11. Suppose you know that $\int_{2}^{3} f(x) d x=7, \int_{1}^{7} f(x) d x=3$, and $\int_{1}^{3} f(x) d x=-1$. What is $\int_{2}^{7} 3 f(x) d x$?
12. What is the most general antiderivative of $h(x)=\sin x+3 x\left(1-x^{\frac{1}{3}}\right)$? What is the particular antiderivative of the curve that contains the point $(0,4)$?
13. Find a definite integral which can be evaluated using the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n} \cos \left(3+\frac{2 i}{n}\right)
$$

