1. Find the limits.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-\sqrt{1-x^{2}}}{x^{2}}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-3 x+2\right| \cos (2 x)}{x^{2}-3 x+2}$
(c) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}-x\right)}{\tan (3 x)}$
(d) $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)$
2. Find the derivatives of the functions. Do not simplify your answers.
(a) $f(x)=x^{2} \sin \left(x^{2}\right)$
(b) $g(x)=\cos (\sec (x-1))$
(c) $h(x)=\frac{x^{2}+2}{\sqrt{x-x^{3}}}$
3. Consider the function

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} \quad x<2 \\ a x^{2}+b x+3 & 2 \leq x<3 \\ 2 x-a-b \quad x \geq 3\end{cases}
$$

Find values of a and b such that $f(x)$ is continuous everywhere.
4. Suppose that $f(x)=\sqrt{x-1}$. Let $\epsilon=1$. What is the maximum $\delta>0$ such that $0<|x-5|<\delta$ implies that $|f(x)-2|<\epsilon$?
5. Use the definition of the derivative to find the derivative of $f(x)=\frac{1}{x^{2}}$. (Your answer should involve a computation using a limit.)
6. Prove that the equation $x \cos x=x^{2}-1$ has a root in $[0, \pi]$. Make sure you explain why the hypotheses of any theorems you apply are justified!
7. Find the tangent line to the curve defined by the equation $y \sin (2 x)=x \cos (2 y)$ at $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$.
8. Two cars start moving from the same point. One travels south at 60 mph and the other travels west at 25 mph . At what rate is the distance between the cars increasing two hours later?
9. A 5 ft tall woman walks toward a 20 ft lamppost at a rate of $4 \mathrm{ft} / \mathrm{s}$. How fast is the length of her shadow decreasing when she is 6 ft from the lamppost?
10. A ball is thrown into the air from atop a cliff on the moon. Its height above the ground, in feet, is given by $s(t)=100+20 t-26 t^{2} \mathrm{ft}$.
(a) At what time does the ball hit the ground?
(b) What is the ball's position when its velocity is $-58 \mathrm{ft} / \mathrm{s}$?
(c) What is the maximum height the ball reaches? You do not need to simplify your answer.

