Name: _

- 1. Class notes for this week: This week we have covered Sections 3.1, 3.2, and 3.3. Next week we will cover Sections 3.4 and 3.5.
- 2. In this question, we will show the equation $2x + \cos x = 0$ has exactly one real root.
 - (a) (1 point) Let $f(x) = 2x + \cos x$. Use the Intermediate Value Theorem to show there is some c such that f(c) = 0 in $\left(-\frac{\pi}{2}, 0\right)$. Be sure to check all hypotheses of the theorem.
 - (b) (1 point) Suppose there is another number d such that f(d) = 0. Use Rolles' Theorem to show that there is some e between d and c such that f'(e) = 0. Be sure to check all hypotheses of the theorem.
 - (c) (1 point) Show that f'(x) is never zero, and use this to conclude that such a d cannot exist. Therefore c is the only root of $2x + \cos x = 0$.

- 3. (a) (1 point) Let $g(x) = (x+1)^5 5x 2$. Find
 - The intervals on which g is increasing and decreasing.
 - The local maximum and minimum values of g.
 - The intervals on which g is concave up and concave down.
 - The inflection points of g.
 - (b) (1 point) Use your answers to the first part of this problem to sketch a graph of g(x).