Name:
Clear your desk of everything excepts pens, pencils and erasers. If you have a question raise your hand and I will come to you.

1. (2 points) Fill-in-the-Blank. No work needed. No partial credit available. Let $f(x)=\frac{x}{x^{2}+1}$.

- The interval(s) on which $f(x)$ is increasing are \qquad .
- The interval(s) on which $f(x)$ is concave up are \qquad .

Hint: For the second part, once you've differentiated, don't start by trying to multiply out the numerator - factor out a copy of $\left(x^{2}+1\right)$ first.

Extra Work Space.
2. Let $f(x)=\left\{\begin{array}{lc}x^{2}-1 & x<0 \\ \frac{1}{x-1} & 0 \leq x\end{array}\right.$.
(a) (1 point) The hypotheses of the Mean Value Theorem are true for $f(x)$ on exactly one of the intervals $[-1,0]$ and $[0,2]$. Which one is it? Explain your answer.
(b) (2 points) At what points c in the interval you picked in part (a) is the conclusion of the Mean Value Theorem satisfied?

