Name:

1. Class notes for this week: This week we have covered Section 3.9, Section 4.1, and Appendix E. Next week we will cover Sections 4.2 and 4.3 , and begin review for Exam 2.
2. Do not forget that Exam 2 is Monday, November 21, 7:45-9:15 p.m. We are in Wells A126 for the exam (same room as last time). The exam covers Sections 2.9-3.5,3.7-4.3. It is, as previously, a very good idea to do the exams from previous years which are posted on the course webpage.
3. (2 points) Suppose you know that a particle is traveling with acceleration $a(t)=10 \sin t+3 \cos t$. Furthermore, you know that at time $t=0$ its position is $s(0)=0$ and at time $t=2 \pi$ its position is $s(2 \pi)=12$. Determine the position function $s(t)$ of the particle.
4. Let us find the area under the curve $f(x)=x^{3}$ from $x=0$ to $x=1$.
(a) (1 point) Suppose we divide the interval $[0,1]$ into n subintervals and use the right-hand endpoints of the intervals as sample points. What is Δx ? What is each sample point x_{i} ?
(b) (1 point) Write an expression for the right-hand sum R_{n} in sigma notation, and use the summation rules to write this sum as an expression in n.
(c) (1 point) Find the limit of the sum R_{n} as $n \rightarrow \infty$. What do you conclude the area under the curve is?
