Name: .

- 1. Class notes for this week: This week we have covered Section 3.9, Section 4.1, and Appendix E. Next week we will cover Sections 4.2 and 4.3, and begin review for Exam 2.
- 2. Do not forget that Exam 2 is Monday, November 21, 7:45-9:15 p.m. We are in Wells A126 for the exam (same room as last time). The exam covers Sections 2.9-3.5,3.7-4.3. It is, as previously, a very good idea to do the exams from previous years which are posted on the course webpage.
- 3. (2 points) Suppose you know that a particle is traveling with acceleration $a(t) = 10 \sin t + 3 \cos t$. Furthermore, you know that at time t = 0 its position is s(0) = 0 and at time $t = 2\pi$ its position is $s(2\pi) = 12$. Determine the position function s(t) of the particle.

- 4. Let us find the area under the curve $f(x) = x^3$ from x = 0 to x = 1.
 - (a) (1 point) Suppose we divide the interval [0, 1] into n subintervals and use the right-hand endpoints of the intervals as sample points. What is Δx ? What is each sample point x_i ?
 - (b) (1 point) Write an expression for the right-hand sum R_n in sigma notation, and use the summation rules to write this sum as an expression in n.
 - (c) (1 point) Find the limit of the sum R_n as $n \to \infty$. What do you conclude the area under the curve is?