Calculus II : Practice final (Calculators and textbooks are NOT allowed during the exam.)

1. Evaluate the integral

$$
\begin{gathered}
\int \frac{3 w-1}{w+2} d w \\
\int \frac{3 w-1}{w+2} d w=\int\left(3-\frac{7}{w+2}\right) d w \\
=3 w-7 \ln |w+2|+C
\end{gathered}
$$

2. Find the value of p for which the series is convergent

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}} .
$$

If $p \leq 0$, then

$$
\lim _{n \rightarrow \infty} \frac{\ln p}{n^{p}}=\infty
$$

so by the divergent test, this series is divergent for $p \leq 0$.
If $p=1$, then

$$
\frac{\ln n}{n} \geq \frac{1}{n}
$$

for any positive integer n. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, by the comparison test, this series is also divergent.

For $p>0$ and $p \neq 1$, let

$$
f(x)=\frac{\ln x}{x^{p}}
$$

for $x \geq 1$. Then

- $f(x)$ is positive for $x>1$ and continuous on $[1, \infty)$
- since

$$
f^{\prime}(x)=\frac{1}{x^{p+1}}-p \frac{\ln x}{x^{p+1}}=\frac{1}{x^{p+1}}(1-p \ln x)
$$

so $f^{\prime}(x)<0$ for $x>e^{1 / p}$. So $f(x)$ is decreasing for $\left(e^{1 / p}, \infty\right)$.

- for each integer $n \geq 1$,

$$
f(n)=\frac{\ln n}{n^{p}}
$$

By the integral test, this series is convergent if and only if $\int_{1}^{\infty} f(x) d x$ is convergent. Use integration by part, let $u=\ln x$ and $d v=\frac{1}{x^{p}} d x$ (then $v=\frac{1}{1-p} \frac{1}{x^{p-1}}$ if $p \neq 1$)

$$
\begin{aligned}
\int_{1}^{t} \frac{\ln x}{x^{p}} d x & =\left[\frac{1}{1-p} \frac{\ln x}{x^{p-1}}\right]_{1}^{t}-\int_{1}^{t} \frac{1}{1-p} \frac{1}{x^{p}} d x \\
& =\frac{1}{1-p} \frac{\ln t}{t^{p-1}}-\frac{1}{(1-p)^{2}}\left(\frac{1}{t^{p-1}}-1\right)
\end{aligned}
$$

Then the limit $\int_{1}^{\infty} \frac{\ln x}{x^{p}} d x$ is convergent whenever $p-1>0$.
Therefore, this series is convergent if and only if $p>1$.
3. Find the surface area of the surface obtained by rotating

$$
y=\sqrt{7-x^{2}}, \quad 0 \leq x \leq 1
$$

about the x-axis.

Surface area S :

- about x-axis:

$$
S=\int 2 \pi y d s
$$

- about y-axis:

$$
S=\int 2 \pi x d s
$$

where

$$
d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \quad \text { or } \quad d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

This case,

$$
\frac{d y}{d x}=\frac{1}{2} \frac{-2 x}{\sqrt{7-x^{2}}}
$$

so

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} \sqrt{7-x^{2}} \cdot \sqrt{1+\left(\frac{-x}{\sqrt{7-x^{2}}}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} \sqrt{7} d x=2 \sqrt{7} \pi
\end{aligned}
$$

4.

(a) Sketch the curve

$$
r=\cos 2 \theta .
$$

Four-leaved rose. (p. 643)
(b) Find the points on the curve $r=\cos 2 \theta$ where the tangent line is horizontal or vertical.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta} \\
\frac{d r}{d \theta}=-2 \sin 2 \theta
\end{gathered}
$$

- $\frac{d y}{d \theta}=0$

$$
\begin{gathered}
\Rightarrow \frac{d y}{d \theta}=-2 \sin 2 \theta \sin \theta+\cos 2 \theta \cos \theta=0 \\
\Rightarrow-4 \sin ^{2} \theta \cos \theta+\left(-1+2 \cos ^{2} \theta\right) \cos \theta=0
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow \cos \theta\left(6 \cos ^{2} \theta-5\right)=0 \\
\Rightarrow \cos \theta=0 \text { or } \cos \theta= \pm \frac{\sqrt{5}}{\sqrt{6}}
\end{gathered}
$$

- $\frac{d x}{d \theta}=0$

$$
\begin{aligned}
\Rightarrow \frac{d x}{d \theta} & =-2 \sin 2 \theta \cos \theta-\cos 2 \theta \sin \theta=0 \\
& \Rightarrow \sin \theta\left(6 \sin ^{2} \theta-5\right)=0 \\
& \Rightarrow \sin \theta=0 \text { or } \sin \theta= \pm \frac{\sqrt{5}}{\sqrt{6}}
\end{aligned}
$$

Forget this problem... it is complicated to compute. But you should know how to get the horizontal and vertical tangents... (use $\frac{d x}{d \theta}=0$ or $\frac{d y}{d \theta}=0$)
(c) Find all points of intersection of the curve $r=\cos 2 \theta$ and $r=\frac{1}{2}$.

$$
\begin{gathered}
\cos 2 \theta=\frac{1}{2} \text { or } \cos 2 \theta=-\frac{1}{2} \\
\Rightarrow 2 \theta= \pm \frac{\pi}{3}+2 n \pi \text { or } \pm \frac{2 \pi}{3}+2 n \pi \\
\Rightarrow \theta=\frac{\pi}{6}, \frac{7 \pi}{6},-\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{3}, \frac{4 \pi}{3},-\frac{\pi}{3}, \frac{2 \pi}{3} \\
\Rightarrow\left(\frac{1}{2}, \frac{\pi}{6}\right),\left(\frac{1}{2}, \frac{7 \pi}{6}\right),\left(\frac{1}{2},-\frac{\pi}{6}\right),\left(\frac{1}{2}, \frac{5 \pi}{6}\right) \\
\left(-\frac{1}{2}, \frac{\pi}{3}\right),\left(-\frac{1}{2}, \frac{4 \pi}{3}\right),\left(-\frac{1}{2},-\frac{\pi}{3}\right),\left(-\frac{1}{2}, \frac{2 \pi}{3}\right)
\end{gathered}
$$

(d) Find the area enclosed by one loop of the curve $r=\cos 2 \theta$.

$$
\begin{aligned}
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \cos ^{2} 2 \theta d \theta & =\int_{0}^{\frac{\pi}{4}} \frac{1}{2}(1+\cos 4 \theta) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{1}{4} \sin 4 \theta\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi}{8}
\end{aligned}
$$

5. Let $x=e^{t}+e^{-t}$ and $y=1-2 t$.
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

Since $\frac{d y}{d t}=-2$ and $\frac{d x}{d t}=e^{t}-e^{-t}$,

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2}{e^{t}-e^{-t}} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{2\left(e^{t}+e^{-t}\right)}{\left(e^{t}-e^{-t}\right)}}{\left(e^{t}-e^{-t}\right)^{2}}=\frac{2\left(e^{t}+e^{-t}\right)}{\left(e^{t}-e^{-t}\right)^{3}}
\end{gathered}
$$

(b) For $0 \leq t \leq 3$, find the exact length of the curve.

$$
\begin{aligned}
\text { length } & =\int_{0}^{3} \sqrt{\left(e^{t}-e^{-t}\right)^{2}+4} d t=\int_{0}^{3} \sqrt{\left(e^{t}+e^{-t}\right)^{2}} d t \\
& =\int_{0}^{3}\left(e^{t}+e^{-t}\right) d t=\left[e^{t}-e^{-t}\right]_{0}^{3} \\
& =e^{3}-\frac{1}{e^{3}}
\end{aligned}
$$

6. Determine whether the series is conditionally convergent, absolutely convergent, or divergent. Explain why.
(a)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}
$$

By the alternating series test, it is convergent. But by p-series, it is not absolutely convergent. So it is conditionally convergent.
(b)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2^{\frac{1}{n}}}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{1}{n}}}=1
$$

by the divergent test, this series is divergent.
(c)

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}
$$

By the Root test,

$$
\lim _{n \rightarrow \infty}\left(\left|\frac{(n!)^{n}}{n^{4 n}}\right|\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{4}}\right)=\lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)(n-4)!\right]
$$

is divergent. So the series is divergent.
7. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series?

By the theorem for the power series, this series

- converges for at least $-4 \leq x<4$
- diverges for at least $x<-6$ and $x \geq 6$
(a)

$$
\sum_{n=0}^{\infty} c_{n}
$$

$x=1$, so converges.
(b)

$$
\sum_{n=0}^{\infty} c_{n} 8^{n}
$$

$x=8>6$, so diverges.
(c)

$$
\sum_{n=0}^{\infty} c_{n}(-3)^{n}
$$

$x=-3$, so converges.
8. Find the radius of convergence and interval of convergence of the series

$$
f(x)=\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{\sqrt{n}}
$$

By the Ration test,

$$
\left|\frac{\frac{2^{n+1}(x-1)^{n+1}}{\sqrt{n+1}}}{\frac{2^{n}(x-1)^{n}}{\sqrt{n}}}\right|=2|x-1| \frac{\sqrt{n}}{\sqrt{n+1}} \rightarrow 2|x-1|
$$

as $n \rightarrow \infty$. The series is convergent if $2|x-1|<1$. So the radius of convergence is $\frac{1}{2}$.
At points $x-1= \pm \frac{1}{2}$,

- $x=\frac{3}{2}$:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

is divergent.

- $x=-\frac{1}{2}$:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

is convergent, by the alternating series theorem.
So the interval of convergence is

$$
\left[-\frac{1}{2}, \frac{3}{2}\right) .
$$

9.

(a) Find the radius of convergence and interval of convergence of the seires

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

By the Ratio test,

$$
\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\frac{|x|}{n+1} \rightarrow 0
$$

as $n \rightarrow \infty$ for any x. So the radius of convergence is ∞ and the interval of convergence is $(-\infty, \infty)$.
(b) In fact,

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}
$$

for x in the interval of convergence obtained in (a). Evaluate the integral

$$
\begin{gathered}
\int e^{-x^{2}} d x \\
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}
\end{gathered}
$$

So

$$
\int e^{-x^{2}} d x=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) n!} x^{2 n+1}+C
$$

10. Use differentiation to find a power series representation for

$$
f(x)=\frac{1}{(1+x)^{2}}
$$

What is the radius of convergence?

$$
\begin{gathered}
\left(\frac{-1}{1+x}\right)^{\prime}=\frac{1}{(1+x)^{2}} \\
\frac{-1}{1+x}=\sum_{n=0}^{\infty}(-1)(-x)^{n} \\
\Rightarrow\left(\sum_{n=0}^{\infty}(-1)^{n+1} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n-1}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}
\end{gathered}
$$

By the Ratio text

$$
\left|\frac{x^{n+1}(n+2)}{x^{n}(n+1)}\right| \rightarrow|x|
$$

as $n \rightarrow \infty$. So the radius of convergence is 1 .

Trigonometric identities

$$
\begin{gathered}
\sin ^{2} x+\cos ^{2} x=1 \\
\sec ^{2} x=1+\tan ^{2} x \\
\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]
\end{gathered}
$$

Integration formulas Constants of integration have been omitted

$$
\begin{gathered}
\int \frac{1}{x^{n}} d x=\left\{\begin{array}{cc}
\frac{1}{(-n+1) x^{n-1}}, & \text { if } n \neq 1 \\
\ln |x|, & \text { if } n=1
\end{array}\right. \\
\int e^{x} d x=e^{x} \\
\int \sin x d x=-\cos x \\
\int \cos x d x=\sin x \\
\int \sec ^{2} x d x=\tan x \\
\int \sec x \tan x d x=\sec x \\
\int \sec x d x=\ln |\sec x+\tan x| \\
\int \tan x d x=\ln |\sec x|
\end{gathered}
$$

