Calculus II : Practice final (Calculators and textbooks are NOT allowed during the exam.)

1. Evaluate the integral

$$
\int \frac{3 w-1}{w+2} d w
$$

2. Find the value of p for which the series is convergent

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}
$$

3. Find the surface area of the surface obtained by rotating

$$
y=\sqrt{7-x^{2}}, \quad 0 \leq x \leq 1
$$

about the x-axis.
4.
(a) Sketch the curve

$$
r=\cos 2 \theta
$$

(b) Find the points on the curve $r=\cos 2 \theta$ where the tangent line is horizontal or vertical.
(c) Find all points of intersection of the curve $r=\cos 2 \theta$ and $r=\frac{1}{2}$.
(d) Find the area enclosed by one loop of the curve $r=\cos 2 \theta$.
5. Let $x=e^{t}+e^{-t}$ and $y=1-2 t$.
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) For $0 \leq t \leq 3$, find the exact length of the curve.
6. Determine whether the series is conditionally convergent, absolutely convergent, or divergent. Explain why.
(a)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}
$$

(b)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2^{\frac{1}{n}}}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}
$$

7. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series?
(a)

$$
\sum_{n=0}^{\infty} c_{n}
$$

(b)

$$
\sum_{n=0}^{\infty} c_{n} 8^{n}
$$

(c)

$$
\sum_{n=0}^{\infty} c_{n}(-3)^{n}
$$

8. Find the radius of convergence and interval of convergence of the series

$$
f(x)=\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{\sqrt{n}}
$$

9.

(a) Find the radius of convergence and interval of convergence of the seires

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

(b) In fact,

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}
$$

for x in the interval of convergence obtained in (a). Evaluate the integral

$$
\int e^{-x^{2}} d x
$$

10. Use differentiation to find a power series representation for

$$
f(x)=\frac{1}{(1+x)^{2}} .
$$

What is the radius of convergence?

Trigonometric identities

$$
\begin{gathered}
\sin ^{2} x+\cos ^{2} x=1 \\
\sec ^{2} x=1+\tan ^{2} x \\
\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]
\end{gathered}
$$

Integration formulas Constants of integration have been omitted

$$
\begin{gathered}
\int \frac{1}{x^{n}} d x=\left\{\begin{array}{cl}
\frac{1}{(-n+1) x^{n-1}}, & \text { if } n \neq 1 \\
\ln |x|, & \text { if } n=1
\end{array}\right. \\
\int e^{x} d x=e^{x} \\
\int \sin x d x=-\cos x \\
\int \cos x d x=\sin x \\
\int \sec ^{2} x d x=\tan x \\
\int \sec x \tan x d x=\sec x \\
\int \sec x d x=\ln |\sec x+\tan x| \\
\int \tan x d x=\ln |\sec x|
\end{gathered}
$$

