
S1012.001 Summer 2011
Calculus II

Final

Instructions: You have 90 minutes to complete the exam. There are seven problems, worth a
total of 120 points. (Plus some extra credit in case you get bored.) Calculators and textbooks are
not allowed. Provide the answers in the simplest possible form that does not require calculator
use. (E.g. expressions like

√
13 are fine.) Show all of your work: if you only give the answer you

will receive no credit, but conversely, partial credit will be given for partial solutions.
Write your solutions in the space below the questions. If you need more space use the back of

the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 5

2 20

3 20

4 25

5 15

6 15

7 20

8 0

Total: 120



Problem 1. 5pts.
Evaluate the following integral. ∫

cosx ln(sinx)dx

Solution: First let t = sin(x), dt = cos xdx, reducing the integral to
∫

ln(t)dt.
Then let u = ln(t), dv = dt, so that du = dt

t
and v = t. We see

∫
ln(t)dt = t ln(t)−∫

tdt
t

= t ln(t) − t + C. Undoing the substitution we obtain
∫

cosx ln(sinx)dx =
sinx ln(sinx)− sinx+ C.

Problem 2.

(a) [10pts.] Find the length of the curve f(x) =
∫ x
1

√√
t− 1dt for 1 ≤ x ≤ 16.

Solution: Notice that f ′(x) =
√√

x− 1 by the Fundamental Theorem of Cal-
culus Part I. So the length of the curve is

L =

∫ 16

1

ds

=

∫ 16

1

√
1 + [f ′(x)]2dx

=

∫ 16

1

√
1 +
√
x− 1dx

=

∫ 16

1

√√
xdx

=

∫ 16

1

x
1
4dx

=
4

5

[
x

5
4

]16
1

=
4

5
(32− 1)

=
124

5

(b) [10pts.] Find the surface area of the solid generated by rotating the curve y =
1
4
x2 − 1

2
ln(x) on 1 ≤ x ≤ 2 about the y-axis.



Solution: We see dy
dx

= x
2
− 1

2x
= x2−1

2x
. Ergo

SA =

∫ 2

1

2πxds

= 2π

∫ 2

1

x

√
1 +

[
x2 − 1

2x

]2
dx

= 2π

∫ 2

1

x

√
1 +

x4 − 2x2 + 1

4x2
dx

= 2π

∫ 2

1

x

√
x4 + 2x2 + 1

4x2
dx

= 2π

∫ 2

1

x

√
(x2 + 1)2

4x2
dx

= 2π

∫ 2

1

x
x2 + 1

2x
dx

= π

∫ 2

1

[
x2 + 1

]
dx

= π

[
x3

3
+ x

]2
1

dx

=
10π

3

Problem 3.
Let x = et cos(t), y = et sin(t), for 0 ≤ t ≤ π.

(a) [10pts.] Find dy
dx

and d2y
dx2

.

Solution:

We have dx
dt

= et cos t+ et(− sin t) and dy
dt

= et sin t+ et cos t. Thus

dy

dx
=

dy
dt
dx
dt

=
et(sin t+ cos t)

et(cos t− sin t)

=
cos t+ sin t

cos t− sin t



Moreover

d2y

dx2
=

d
dt

( dy
dx

)
dx
dt

=

(− sin t+cos t)(cos t−sin t)−(cos t+sin t)(− sin t−cos t)
cos t−sin t)2

et(cos t− sin t)

=
(1− 2 sin t cos t)− (−1− 2 cos t sin t)

et(cos t− sin t)

=
2

et(cos t− sin t)3

(b) [10pts.] Find the exact length of the curve.

Solution:

L =

∫
ds

=

∫ π

0

√[
dx

dt

]2
+

[
dy

dt

]2
dt

=

∫ π

0

√
[et(cos t− sin t)]2 + [et(cos t+ sin t)]2dt

=

∫ π

0

et
√

(1− 2 cos t sin t) + (1 + 2 cos t sin t)dt

=

∫ π

0

et
√

2dt

=
[√

2et
]π
0

=
√

2[eπ − 1]

Problem 4.

(a) [5pts.] Sketch the curve r = sin(3θ) for 0 ≤ θ ≤ π.

We obtain a three-leafed rose (see below).

(b) [7pts.] Find the tangent line to the curve at (1, π
6
).



Solution:

Notice that dr
dθ

= 3 cos(3θ). Therefore we can compute dy
dx

:

dy

dx
=

dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ

=
3 cos(3θ) sin θ + sin(3θ) cos θ

3 cos(3θ) cos θ − sin(3θ) sin(θ)

So at (1, π
6
) we have

dy

dx
=

3(0)
(
1
2

)
+ (1)

(√
3
2

)
3(0)

(√
3
2

)
− 1

(
1
2

)
= −
√

3

In Cartesian coordinates, the point in question is
(
cos
(
π
6

)
, sin

(
π
6

))
, or

(√
3
2
,
√

12
)

.

Hence the tangent line is y − 1
2

= −
√

3
(
x−

√
3
2

)
, or y = −

√
3x+ 2.

(c) [8pts.] Find the area enclosed by a single loop of the curve.

Solution: A single loop of the curve runs from θ = 0 to θ = π
3
. We compute

the area:

A =
1

2

∫ π
3

0

[sin(3θ)]2dθ

=
1

2

∫ π
3

0

sin2(3θ)dθ

=
1

2

∫ π
3

0

1

2
(1− cos(6θ))dθ

=
1

4

[
θ − 1

6
sin(6θ)

]π
3

0

=
1

4

[
(
π

3
− 0)− (0− 0)

]
=

π

12

(d) [5pts.] Find all points of intersection between the curve and r = 1
2
.



Solution: Points of intersection can occur when r = 1
2
and when r = −1

2
, since

the second equation also represents the circle of radius 1
2
. When 1

2
= sin(3θ)

and 0 ≤ θ ≤ π, the possibilities are 3θ = π
6
, 5π

6
, 13π

6
, 17π

6
and θ = π

18
, 5π
18
, 13π

18
, 17π

18
.

When −1
2

= sin(3θ) and 0 ≤ θ ≤ π, the possibilities are 3θ = 7π
6
, 11π

6
and

θ = 7π
18
, 11π

18
.

Hence the six intersection points are (1
2
, π
18

), (1
2
, 5π
18

), (1
2
, 13π

18
), (1

2
, 17π

18
), (−1

2
, 7π
18

),
(−1

2
, 11π

18
). (Or any other representations of the same points.)

Problem 5.

(a) [5pts.] Find the sum of the series

∞∑
n=1

1 + 2n

3n−1
.

Solution:

∞∑
n=1

1 + 2n

3n−1
=
∞∑
n=1

1

3n−1
+
∞∑
n=1

2n

3n−1

=
∞∑
n=1

(
1

3

)n−1
+
∞∑
n=1

2

(
2

3

)n−1
=

1

1− 1
3

+
2

1− 2
3

=
1
2
3

+
2
1
3

=
3

2
+ 6

=
15

2

(b) [10pts.] For each of the series below, find some number n so that the nth partial
sum of the series is within .001 of the actual sum of the series. It does not need
to be the smallest such n. Justify your answer. (Do not attempt to compute this
partial sum.)

∞∑
n=1

(−1)n
1

n!

∞∑
n=1

1

n3



Solution: The series
∑∞

n=1(−1)n 1
n!

is alternating. Ergo the nth remainder Rn

is less than the absolute value of the (n + 1)st term, usually denoted bn+1.
Therefore we must find n+ 1 such that Rn ≤ 1

(n+1)!
≤ .001. Letting n+ 1 = 7,

so that (n + 1)! = 5040, will do. Ergo the sixth partial sum of the series is
accurate to within .001.

The series
∑∞

n=1
1
n3 has an = f(n) where f is the positive, decreasing, continuous

function f(x) = 1
x3

. Therefore the error Rn of the nth partial sum is less than

the value of the improper integral
∫∞
n

dx
x3

= limt→∞
[
− 1

2x2

]∞
n

= 1
2n2 . Therefore

we must find n such that Rn ≤ 1
2n2 ≤ .001, that is, such that 2n2 ≥ 1000.

Letting n = 23 (or any higher number whose square is greater than 500) will
suffice.

Problem 6.
Determine whether the following series are conditionally convergent, absolutely con-
vergent, or divergent. Clearly show that the hypotheses of any theorems you use are
satisfied.

(a) [5pts.]
∞∑
n=1

cos(nπ/3)

n!

Solution:

Consider the series
∑∞

n=1

∣∣∣ cos(nπ/3)n!

∣∣∣. It has positive terms and we can compare it

to
∑∞

n=1
1
n!

, which we know to be convergent (either from class or by the Ratio

Test). Since
∣∣∣ cos(nπ/3)n!

∣∣∣ ≤ 1
n!

for all n,
∑∞

n=1

∣∣∣ cos(nπ/3)n!

∣∣∣ converges, and therefore∑∞
n=1

cos(nπ/3)
n!

converges absolutely.

(b) [5pts.]
∞∑
n=1

n2 + 4n+ 3

5− 3n2

Solution: The limit of the terms of the series is 1
3
, and in particular not 0.

Ergo the series diverges.

(c) [5pts.]
∞∑
n=1

(−1)n(
√
n+ 1−

√
n)



Solution:

We use the alternating series test with bn =
√
n+ 1−

√
n. Let f(x) =

√
x+ 1−√

x. Then f ′(x) = 1
2
√
x+1
− 1

2
√
x
< 0, so f(x) is decreasing and in particular

bn+1 < bn. Moreover,

lim
n→∞

bn = lim
n→∞

√
n+ 1−

√
n

= lim
n→∞

(
√
n+ 1−

√
n) ·

(√
n+ 1 +

√
n√

n+ 1 +
√
n

)
= lim

n→∞

1√
n+ 1−

√
n

= 0

Therefore the series converges at least conditionally by the alternating series
test. To test whether it converges absolutely, notice that

∑∞
n=1

√
n+ 1−

√
n is

a telescoping series with partial sums sn = (
√

2−
√

1)+(
√

3−
√

2)+ · · ·+(
√
n−√

n− 1) + (
√
n+ 1 −

√
n) =

√
n+ 1 − 1. This diverges to infinity as n → ∞.

Ergo the series is only conditionally convergent.

Problem 7.

(a) [10pts.] Find the radius of convergence and interval of convergence of the power
series

∞∑
n=1

3n(x+ 4)n

n
1
4

Solution: To determine R, we use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣3n+1(x+ 4)n

(n+ 1)
1
4

· n
1
4

3n(x+ 4)n

∣∣∣∣∣
= lim

n→∞

(
n

n+ 1

) 1
4

3|x+ 4|

= 3|x+ 4|

The power series converges absolutely when 3|x + 4| < 1, or when |x + 4| < 1
3
,

and diverges when |x+4| > 1
3
. So R = 1

3
. We don’t yet know whether the power

series converges on the endpoints of its interval of convergence, −41
3

and −32
3
.

When x = −32
3
, the series becomes

∑∞
n=1

1

n
1
4

, which is a p-series with p < 1,



hence divergent. When x = −41
3
, the series becomes

∑∞
n=1

(−1)n

n
1
4

, which can be

shown to satisfy the hypotheses of the alternating series test, and consequently
converges. The interval of convergence is [−41

3
,−32

3
).

(b) [10pts.] Recall that

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Evaluate
∫

sin(x2)dx. (Note that this is impossible using the techniques of integra-
tion from the first half of the class. :)

Solution:

Given the known power series representation for sinx, we see

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n
x4n+2

(2n+ 1)!

= x2 − x6

3!
+
x10

5!
− x14

7!
+ · · ·

Therefore

∫
sin(x2)dx = C +

1

3
x3 − x7

7 · 3!
+

x11

11 · 5!
− x15

15 · 7!
+ · · ·

= C +
∞∑
n=0

(−1)n
x4n+3

(4n+ 3) · (2n+ 1)!

Problem 8.
Extra Credit. Suppose you know that

∑∞
n=0 cn(x− 3)n converges for x = 1 but diverges

for x = 7. What, if anything, can you say about the following?

∞∑
n=0

cn

∞∑
n=0

cn5n



∞∑
n=0

cn2n

Solution: We see the power series is centered at 3 and the radius of convergence is
at least |1 − 3| = 2 and less than |7 − 3| = 4. So the series converges for x ∈ [1, 5),
diverges for x ∈ [7,∞) and x ∈ (−∞,−1). We don’t know how it behaves for
x ∈ [−1, 1) and x ∈ [5, 7). In the first series x = 4 (so that x − 3 = 1). This series
converges. For the second series x − 3 = 5, so x = 8 and the series diverges. For
the third x − 3 = 2, so x = 5. We don’t have enough information to determine the
behavior of the series in this case.


