Weekly Homework Week 3

Section 8.1

8. $y^{2}=4(x+4)^{3}, y>0 \Rightarrow y=2(x+4)^{3 / 2} \Rightarrow d y / d x=3(x+4)^{1 / 2} \Rightarrow$

$$
1+(d y / d x)^{2}=1+9(x+4)=9 x+37 . \text { So }
$$

$$
L=\int_{0}^{2} \sqrt{9 x+37} d x\left[\begin{array}{c}
u=9 x+37, \\
d u=9 d x
\end{array}\right]=\int_{37}^{55} u^{1 / 2}\left(\frac{1}{9} d u\right)=\frac{1}{9} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{37}^{55}=\frac{2}{27}(55 \sqrt{55}-37 \sqrt{37}) .
$$

10. $x=\frac{y^{4}}{8}+\frac{1}{4 y^{2}} \Rightarrow \frac{d x}{d y}=\frac{1}{2} y^{3}-\frac{1}{2} y^{-3} \Rightarrow$

$$
\begin{aligned}
& 1+(d x / d y)^{2}=1+\frac{1}{4} y^{6}-\frac{1}{2}+\frac{1}{4} y^{-6}=\frac{1}{4} y^{6}+\frac{1}{2}+\frac{1}{4} y^{-6}=\left(\frac{1}{2} y^{3}+\frac{1}{2} y^{-3}\right)^{2} . \text { So } \\
& \begin{aligned}
L & =\int_{1}^{2} \sqrt{\left(\frac{1}{2} y^{3}+\frac{1}{2} y^{-3}\right)^{2}} d y=\int_{1}^{2}\left(\frac{1}{2} y^{3}+\frac{1}{2} y^{-3}\right) d y=\left[\frac{1}{8} y^{4}-\frac{1}{4} y^{-2}\right]_{1}^{2}=\left(2-\frac{1}{16}\right)-\left(\frac{1}{8}-\frac{1}{4}\right) \\
& =2+\frac{1}{16}=\frac{33}{16} .
\end{aligned}
\end{aligned}
$$

16. $y=\sqrt{x-x^{2}}+\sin ^{-1}(\sqrt{x}) \Rightarrow \frac{d y}{d x}=\frac{1-2 x}{2 \sqrt{x-x^{2}}}+\frac{1}{2 \sqrt{x} \sqrt{1-x}}=\frac{2-2 x}{2 \sqrt{x} \sqrt{1-x}}=\sqrt{\frac{1-x}{x}} \Rightarrow$

$$
1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{1-x}{x}=\frac{1}{x} \text {. The curve has endpoints }(0,0) \text { and }\left(1, \frac{\pi}{2}\right) \text {, so } L=\int_{0}^{1} \sqrt{\frac{1}{x}} d x=[2 \sqrt{x}]_{0}^{1}=2 \text {. }
$$

20. $x^{2}=(y-4)^{3} \Rightarrow x=(y-4)^{3 / 2} \quad[$ for $x>0] \Rightarrow d x / d y=\frac{3}{2}(y-4)^{1 / 2} \Rightarrow$

$$
1+(d x / d y)^{2}=1+\frac{9}{4}(y-4)=\frac{9}{4} y-8 \text {. So }
$$

$$
\begin{aligned}
L & =\int_{5}^{8} \sqrt{\frac{9}{4} y-8} d y=\int_{13 / 4}^{10} \sqrt{u}\left(\frac{4}{9} d u\right)\left[\begin{array}{l}
u=\frac{9}{4} y-8, \\
d u=\frac{9}{4} d y
\end{array}\right]=\frac{4}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{13 / 4}^{10} \\
& =\frac{8}{27}\left[10^{3 / 2}-\left(\frac{13}{4}\right)^{3 / 2}\right] \quad\left[\text { or } \frac{1}{27}(80 \sqrt{10}-13 \sqrt{13})\right]
\end{aligned}
$$

Section 8.2
5. $y=x^{3} \quad \Rightarrow \quad y^{\prime}=3 x^{2}$. So

$$
\begin{aligned}
S & =\int_{0}^{2} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=2 \pi \int_{0}^{2} x^{3} \sqrt{1+9 x^{4}} d x \quad\left[u=1+9 x^{4}, d u=36 x^{3} d x\right] \\
& =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u=\frac{\pi}{18}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{145}=\frac{\pi}{27}(145 \sqrt{145}-1)
\end{aligned}
$$

11. $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2} \Rightarrow d x / d y=\frac{1}{2}\left(y^{2}+2\right)^{1 / 2}(2 y)=y \sqrt{y^{2}+2} \Rightarrow 1+(d x / d y)^{2}=1+y^{2}\left(y^{2}+2\right)=\left(y^{2}+1\right)^{2}$.

So $S=2 \pi \int_{1}^{2} y\left(y^{2}+1\right) d y=2 \pi\left[\frac{1}{4} y^{4}+\frac{1}{2} y^{2}\right]_{1}^{2}=2 \pi\left(4+2-\frac{1}{4}-\frac{1}{2}\right)=\frac{21 \pi}{2}$.
15. $x=\sqrt{a^{2}-y^{2}} \Rightarrow d x / d y=\frac{1}{2}\left(a^{2}-y^{2}\right)^{-1 / 2}(-2 y)=-y / \sqrt{a^{2}-y^{2}} \Rightarrow$

$$
\begin{aligned}
& 1+\left(\frac{d x}{d y}\right)^{2}=1+\frac{y^{2}}{a^{2}-y^{2}}=\frac{a^{2}-y^{2}}{a^{2}-y^{2}}+\frac{y^{2}}{a^{2}-y^{2}}=\frac{a^{2}}{a^{2}-y^{2}} \Rightarrow \\
& S=\int_{0}^{a / 2} 2 \pi \sqrt{a^{2}-y^{2}} \frac{a}{\sqrt{a^{2}-y^{2}}} d y=2 \pi \int_{0}^{a / 2} a d y=2 \pi a[y]_{0}^{a / 2}=2 \pi a\left(\frac{a}{2}-0\right)=\pi a^{2} .
\end{aligned}
$$

Note that this is $\frac{1}{4}$ the surface area of a sphere of radius a, and the length of the interval $y=0$ to $y=a / 2$ is $\frac{1}{4}$ the length of the interval $y=-a$ to $y=a$.
16. $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x \Rightarrow \frac{d y}{d x}=\frac{x}{2}-\frac{1}{2 x} \Rightarrow 1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{x^{2}}{4}-\frac{1}{2}+\frac{1}{4 x^{2}}=\frac{x^{2}}{4}+\frac{1}{2}+\frac{1}{4 x^{2}}=\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}$. So

$$
\begin{aligned}
S & =\int_{1}^{2} 2 \pi x \sqrt{\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}} d x=2 \pi \int_{1}^{2} x\left(\frac{x}{2}+\frac{1}{2 x}\right) d x=\pi \int_{1}^{2}\left(x^{2}+1\right) d x=\pi\left[\frac{1}{3} x^{3}+x\right]_{1}^{2} \\
& =\pi\left[\left(\frac{8}{3}+2\right)-\left(\frac{1}{3}+1\right)\right]=\frac{10}{3} \pi
\end{aligned}
$$

33. For the upper semicircle, $f(x)=\sqrt{r^{2}-x^{2}}, f^{\prime}(x)=-x / \sqrt{r^{2}-x^{2}}$. The surface area generated is

$$
\begin{aligned}
S_{1} & =\int_{-r}^{r} 2 \pi\left(r-\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=4 \pi \int_{0}^{r}\left(r-\sqrt{r^{2}-x^{2}}\right) \frac{r}{\sqrt{r^{2}-x^{2}}} d x \\
& =4 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}-r\right) d x
\end{aligned}
$$

For the lower semicircle, $f(x)=-\sqrt{r^{2}-x^{2}}$ and $f^{\prime}(x)=\frac{x}{\sqrt{r^{2}-x^{2}}}$, so $S_{2}=4 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}+r\right) d x$.
Thus, the total area is $S=S_{1}+S_{2}=8 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}\right) d x=8 \pi\left[r^{2} \sin ^{-1}\left(\frac{x}{r}\right)\right]_{0}^{r}=8 \pi r^{2}\left(\frac{\pi}{2}\right)=4 \pi^{2} r^{2}$.

Section 7.8

9. $\int_{2}^{\infty} e^{-5 p} d p=\lim _{t \rightarrow \infty} \int_{2}^{t} e^{-5 p} d p=\lim _{t \rightarrow \infty}\left[-\frac{1}{5} e^{-5 p}\right]_{2}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{5} e^{-5 t}+\frac{1}{5} e^{-10}\right)=0+\frac{1}{5} e^{-10}=\frac{1}{5} e^{-10}$. Convergent
10. $I=\int_{-\infty}^{\infty} \cos \pi t d t=I_{1}+I_{2}=\int_{-\infty}^{0} \cos \pi t d t+\int_{0}^{\infty} \cos \pi t d t$, but $I_{1}=\lim _{s \rightarrow-\infty}\left[\frac{1}{\pi} \sin \pi t\right]_{s}^{0}=\lim _{s \rightarrow-\infty}\left(-\frac{1}{\pi} \sin \pi t\right)$ and this limit does not exist. Since I_{1} is divergent, I is divergent, and there is no need to evaluate I_{2}. Divergent
11. $I=\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x=I_{1}+I_{2}=\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x+\int_{0}^{\infty} x^{3} e^{-x^{4}} d x$. Now

$$
\begin{aligned}
I_{2} & =\lim _{t \rightarrow \infty} \int_{0}^{t} x^{3} e^{-x^{4}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t^{4}} e^{-u}\left(\frac{1}{4} d u\right) \quad\left[\begin{array}{c}
u=x^{4}, \\
d u=4 x^{3} d x
\end{array}\right] \\
& =\frac{1}{4} \lim _{t \rightarrow \infty}\left[-e^{-u}\right]_{0}^{t^{4}}=\frac{1}{4} \lim _{t \rightarrow \infty}\left(-e^{-t^{4}}+1\right)=\frac{1}{4}(0+1)=\frac{1}{4} .
\end{aligned}
$$

Since $f(x)=x^{3} e^{-x^{4}}$ is an odd function, $I_{1}=-\frac{1}{4}$, and hence, $I=0$. Convergent
45.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 2} \sec ^{2} x d x=\lim _{t \rightarrow(\pi / 2)^{-}} \int_{0}^{t} \sec ^{2} x d x=\lim _{t \rightarrow(\pi / 2)^{-}}[\tan x]_{0}^{t} \\
& =\lim _{t \rightarrow(\pi / 2)^{-}}(\tan t-0)=\infty
\end{aligned}
$$

Infinite area
49. For $x>0, \frac{x}{x^{3}+1}<\frac{x}{x^{3}}=\frac{1}{x^{2}}$. $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent by Equation 2 with $p=2>1$, so $\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$ is convergent by the Comparison Theorem. $\int_{0}^{1} \frac{x}{x^{3}+1} d x$ is a constant, so $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x=\int_{0}^{1} \frac{x}{x^{3}+1} d x+\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$ is also convergent.
55. $\int_{0}^{\infty} \frac{d x}{\sqrt{x}(1+x)}=\int_{0}^{1} \frac{d x}{\sqrt{x}(1+x)}+\int_{1}^{\infty} \frac{d x}{\sqrt{x}(1+x)}=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{d x}{\sqrt{x}(1+x)}+\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{\sqrt{x}(1+x)}$. Now

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x}(1+x)} & =\int \frac{2 u d u}{u\left(1+u^{2}\right)}\left[\begin{array}{c}
u=\sqrt{x}, x=u^{2}, \\
d x=2 u d u
\end{array}\right]=2 \int \frac{d u}{1+u^{2}}=2 \tan ^{-1} u+C=2 \tan ^{-1} \sqrt{x}+C, \text { so } \\
\int_{0}^{\infty} \frac{d x}{\sqrt{x}(1+x)} & =\lim _{t \rightarrow 0^{+}}\left[2 \tan ^{-1} \sqrt{x}\right]_{t}^{1}+\lim _{t \rightarrow \infty}\left[2 \tan ^{-1} \sqrt{x}\right]_{1}^{t} \\
& =\lim _{t \rightarrow 0^{+}}\left[2\left(\frac{\pi}{4}\right)-2 \tan ^{-1} \sqrt{t}\right]+\lim _{t \rightarrow \infty}\left[2 \tan ^{-1} \sqrt{t}-2\left(\frac{\pi}{4}\right)\right]=\frac{\pi}{2}-0+2\left(\frac{\pi}{2}\right)-\frac{\pi}{2}=\pi .
\end{aligned}
$$

