Daily Homework Week 1

32.
$$\int_{0}^{\pi/4} \sec \theta \tan \theta \, d\theta = [\sec \theta]_{0}^{\pi/4} = \sec \frac{\pi}{4} - \sec 0 = \sqrt{2} - 1$$

7. Let $u = x^{2}$. Then $du = 2x \, dx$ and $x \, dx = \frac{1}{2} \, du$, so $\int x \sin(x^{2}) \, dx = \int \sin u \left(\frac{1}{2} \, du\right) = -\frac{1}{2} \cos u + C = -\frac{1}{2} \cos(x^{2}) + C$
8. First let $u = t^{2}$, $dv = \sin \beta t \, dt \Rightarrow du = 2t \, dt$, $v = -\frac{1}{\beta} \cos \beta t$. Then by Equation 2,
 $I = \int t^{2} \sin \beta t \, dt = -\frac{1}{\beta} t^{2} \cos \beta t - \int -\frac{2}{\beta} t \cos \beta t \, dt$. Next let $U = t$, $dV = \cos \beta t \, dt \Rightarrow dU = dt$,
 $V = \frac{1}{\beta} \sin \beta t$, so $\int t \cos \beta t \, dt = \frac{1}{\beta} t \sin \beta t - \int \frac{1}{\beta} \sin \beta t \, dt = \frac{1}{\beta} t \sin \beta t + \frac{1}{\beta^{2}} \cos \beta t$. Thus,
 $I = -\frac{1}{\beta} t^{2} \cos \beta t + \frac{2}{\beta} \left(\frac{1}{\beta} t \sin \beta t + \frac{1}{\beta^{2}} \cos \beta t\right) + C = -\frac{1}{\beta} t^{2} \cos \beta t + \frac{2}{\beta^{2}} t \sin \beta t + \frac{2}{\beta^{3}} \cos \beta t + C$.
6. Let $y = \sqrt{x}$, so that $dy = \frac{1}{2\sqrt{x}} \, dx$ and $dx = 2y \, dy$. Then

$$\int \frac{\sin^3\left(\sqrt{x}\right)}{\sqrt{x}} dx = \int \frac{\sin^3 y}{y} (2y \, dy) = 2 \int \sin^3 y \, dy = 2 \int \sin^2 y \, \sin y \, dy = 2 \int (1 - \cos^2 y) \, \sin y \, dy$$
$$\stackrel{e}{=} 2 \int (1 - u^2)(-du) = 2 \int (u^2 - 1) \, du = 2 \left(\frac{1}{3}u^3 - u\right) + C = \frac{2}{3}\cos^3 y - 2\cos y + C$$
$$= \frac{2}{3}\cos^3(\sqrt{x}) - 2\cos\sqrt{x} + C$$