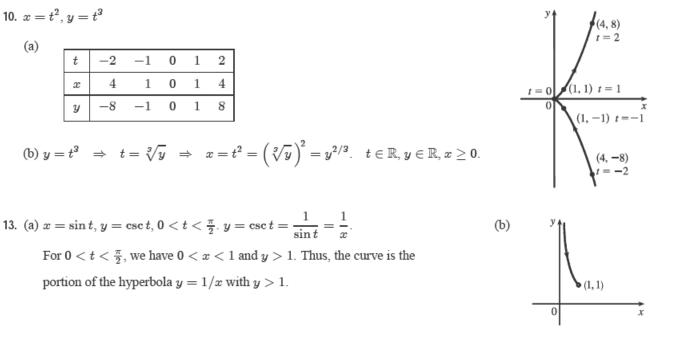
Weekly Homework Week 4



28. (a) $x = t^4 - t + 1 = (t^4 + 1) - t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.

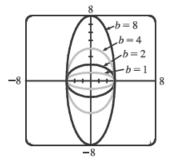
(b)
$$y = \sqrt{t} \ge 0$$
. $x = t^2 - 2t = t(t-2)$ is negative for $0 < t < 2$, so these equations are matched with graph I.

(c)
$$x = \sin 2t$$
 has period $2\pi/2 = \pi$. Note that

 $y(t+2\pi) = \sin[t+2\pi+\sin 2(t+2\pi)] = \sin(t+2\pi+\sin 2t) = \sin(t+\sin 2t) = y(t)$, so y has period 2π . These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.

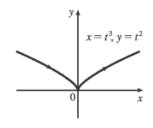
- (d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.
- (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.
- (f) $x = \frac{\sin 2t}{4+t^2}$, $y = \frac{\cos 2t}{4+t^2}$. As $t \to \infty$, x and y both approach 0. These equations are matched with graph III.
- 34. (a) Let $x^2/a^2 = \sin^2 t$ and $y^2/b^2 = \cos^2 t$ to obtain $x = a \sin t$ and $y = b \cos t$ with $0 \le t \le 2\pi$ as possible parametric equations for the ellipse $x^2/a^2 + y^2/b^2 = 1$.
 - (b) The equations are $x = 3 \sin t$ and $y = b \cos t$ for $b \in \{1, 2, 4, 8\}$.

(c) As b increases, the ellipse stretches vertically.



37. (a) $x = t^3 \Rightarrow t = x^{1/3}$, so $y = t^2 = x^{2/3}$.

We get the entire curve $y = x^{2/3}$ traversed in a left to right direction.



(c) $x = e^{-3t} = (e^{-t})^3$ [so $e^{-t} = x^{1/3}$], $y = e^{-2t} = (e^{-t})^2 = (x^{1/3})^2 = x^{2/3}$

If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

43. $C = (2a \cot \theta, 2a)$, so the x-coordinate of P is $x = 2a \cot \theta$. Let B = (0, 2a). Then $\angle OAB$ is a right angle and $\angle OBA = \theta$, so $|OA| = 2a \sin \theta$ and $A = ((2a\sin\theta)\cos\theta, (2a\sin\theta)\sin\theta)$. Thus, the y-coordinate of P is $y = 2a \sin^2 \theta$.

10.
$$x = \cos t + \cos 2t$$
, $y = \sin t + \sin 2t$; $(-1, 1)$.

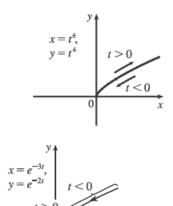
 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t + 2\cos 2t}{-\sin t - 2\sin 2t}$. To find the value of t corresponding to the point (-1, 1), solve $x = -1 \implies \cos t + \cos 2t = -1 \implies$ $\cos t + 2\cos^2 t - 1 = -1 \implies \cos t \ (1 + 2\cos t) = 0 \implies \cos t = 0$ or $\cos t = -\frac{1}{2}$. The interval $[0, 2\pi]$ gives the complete curve, so we need only find the values of t in this interval. Thus, $t = \frac{\pi}{2}$ or $t = \frac{2\pi}{3}$ or $t = \frac{4\pi}{3}$. Checking $t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{2\pi}{3}$, and $\frac{4\pi}{3}$ in the equation for y, we find that $t = \frac{\pi}{2}$ corresponds to (-1, 1). The slope of the tangent at (-1, 1) with $t = \frac{\pi}{2}$ is $\frac{0-2}{-1-0} = 2$. An equation

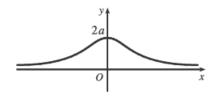
of the tangent is therefore y - 1 = 2(x + 1), or y = 2x + 3.

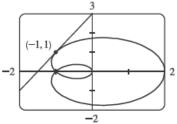
13.
$$x = e^{t}, \ y = te^{-t} \Rightarrow \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-te^{-t} + e^{-t}}{e^{t}} = \frac{e^{-t}(1-t)}{e^{t}} = e^{-2t}(1-t) \Rightarrow$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{dx/dt} = \frac{e^{-2t}(-1) + (1-t)(-2e^{-2t})}{e^{t}} = \frac{e^{-2t}(-1-2+2t)}{e^{t}} = e^{-3t}(2t-3). \text{ The curve is CU when}$$
$$\frac{d^{2}y}{dx^{2}} > 0, \text{ that is, when } t > \frac{3}{2}.$$

(b)
$$x = t^6 \Rightarrow t = x^{1/6}$$
, so $y = t^4 = x^{4/6} = x^{2/3}$.
Since $x = t^6 \ge 0$, we only get the right half of the curve $y = x^{2/3}$.







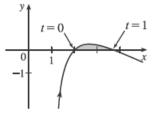
Weekly Homework Week 4

20.
$$x = e^{\sin \theta}, y = e^{\cos \theta}$$
. The whole curve is traced out for $0 \le \theta < 2\pi$.
 $\frac{dy}{d\theta} = -\sin \theta e^{\cos \theta}, \text{ so } \frac{dy}{d\theta} = \theta \iff \sin \theta = 0 \iff \theta = 0 \text{ or } \pi \iff$
 $(x, y) = (1, e) \text{ or } (1, 1/e).$ $\frac{dx}{d\theta} = \cos \theta e^{\sin \theta}, \text{ so } \frac{dx}{d\theta} = 0 \iff \cos \theta = 0 \iff$
 $\theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \iff (x, y) = (e, 1) \text{ or } (1/e, 1).$ The curve has horizontal tangents
at $(1, e)$ and $(1, 1/e)$, and vertical tangents at $(e, 1)$ and $(1/e, 1)$.

31. By symmetry of the ellipse about the x- and y-axes,

$$A = 4 \int_0^a y \, dx = 4 \int_{\pi/2}^0 b \sin \theta \, (-a \sin \theta) \, d\theta = 4ab \int_0^{\pi/2} \sin^2 \theta \, d\theta = 4ab \int_0^{\pi/2} \frac{1}{2} (1 - \cos 2\theta) \, d\theta$$
$$= 2ab \big[\theta - \frac{1}{2} \sin 2\theta \big]_0^{\pi/2} = 2ab \big(\frac{\pi}{2}\big) = \pi ab$$

33. The curve x = 1 + e^t, y = t - t² = t(1 - t) intersects the x-axis when y = 0, that is, when t = 0 and t = 1. The corresponding values of x are 2 and 1 + e. The shaded area is given by



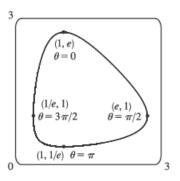
$$\int_{x=2}^{x=1+e} (y_T - y_B) \, dx = \int_{t=0}^{t=1} [y(t) - 0] \, x'(t) \, dt = \int_0^1 (t - t^2) e^t \, dt$$
$$= \int_0^1 t e^t \, dt - \int_0^1 t^2 e^t \, dt = \int_0^1 t e^t \, dt - [t^2 e^t]_0^1 + 2 \int_0^1 t e^t \, dt \qquad \text{[Formula 97 or parts]}$$
$$= 3 \int_0^1 t e^t \, dt - (e - 0) = 3 \left[(t - 1) e^t \right]_0^1 - e \qquad \text{[Formula 96 or parts]}$$
$$= 3 [0 - (-1)] - e = 3 - e$$

34. By symmetry, $A = 4 \int_0^a y \, dx = 4 \int_{\pi/2}^0 a \sin^3 \theta (-3a \cos^2 \theta \sin \theta) \, d\theta = 12a^2 \int_0^{\pi/2} \sin^4 \theta \, \cos^2 \theta \, d\theta$. Now

$$\int \sin^4 \theta \, \cos^2 \theta \, d\theta = \int \sin^2 \theta \left(\frac{1}{4} \sin^2 2\theta\right) d\theta = \frac{1}{8} \int (1 - \cos 2\theta) \sin^2 2\theta \, d\theta$$
$$= \frac{1}{8} \int \left[\frac{1}{2}(1 - \cos 4\theta) - \sin^2 2\theta \, \cos 2\theta\right] d\theta = \frac{1}{16}\theta - \frac{1}{64} \sin 4\theta - \frac{1}{48} \sin^3 2\theta + C$$

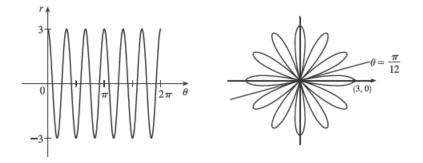
so
$$\int_0^{\pi/2} \sin^4 \theta \, \cos^2 \theta \, d\theta = \left[\frac{1}{16}\theta - \frac{1}{64}\sin 4\theta - \frac{1}{48}\sin^3 2\theta\right]_0^{\pi/2} = \frac{\pi}{32}$$
. Thus, $A = 12a^2\left(\frac{\pi}{32}\right) = \frac{3}{8}\pi a^2$.

11. 2 < r < 3, $\frac{5\pi}{3} \le \theta \le \frac{7\pi}{3}$ r = 2



- 17. $r = 2\cos\theta \Rightarrow r^2 = 2r\cos\theta \Leftrightarrow x^2 + y^2 = 2x \Leftrightarrow x^2 2x + 1 + y^2 = 1 \Leftrightarrow (x-1)^2 + y^2 = 1$, a circle of radius 1 centered at (1, 0). The first two equations are actually equivalent since $r^2 = 2r\cos\theta \Rightarrow r(r-2\cos\theta) = 0 \Rightarrow r = 0$ or $r = 2\cos\theta$. But $r = 2\cos\theta$ gives the point r = 0 (the pole) when $\theta = 0$. Thus, the equation $r = 2\cos\theta$ is equivalent to the compound condition $(r = 0 \text{ or } r = 2\cos\theta)$.
- 25. $x^2 + y^2 = 2cx \quad \Leftrightarrow \quad r^2 = 2cr\cos\theta \quad \Leftrightarrow \quad r^2 2cr\cos\theta = 0 \quad \Leftrightarrow \quad r(r 2c\cos\theta) = 0 \quad \Leftrightarrow \quad r = 0 \text{ or } r = 2c\cos\theta$. $r = 0 \text{ is included in } r = 2c\cos\theta \text{ when } \theta = \frac{\pi}{2} + n\pi$, so the curve is represented by the single equation $r = 2c\cos\theta$.

38.
$$r = 3 \cos 6\theta$$



- 54. (a) r = √θ, 0 ≤ θ ≤ 16π. r increases as θ increases and there are eight full revolutions. The graph must be either II or V. When θ = 2π, r = √2π ≈ 2.5 and when θ = 16π, r = √16π ≈ 7, so the last revolution intersects the polar axis at approximately 3 times the distance that the first revolution intersects the polar axis, which is depicted in graph V.
 - (b) $r = \theta^2$, $0 \le \theta \le 16\pi$. See part (a). This is graph II.
 - (c) $r = \cos(\theta/3)$. $0 \le \frac{\theta}{3} \le 2\pi \implies 0 \le \theta \le 6\pi$, so this curve will repeat itself every 6π radians. $\cos(\frac{\theta}{3}) = 0 \implies \frac{\theta}{3} = \frac{\pi}{2} + \pi n \implies \theta = \frac{3\pi}{2} + 3\pi n$, so there will be two "pole" values, $\frac{3\pi}{2}$ and $\frac{9\pi}{2}$. This is graph VI.
 - (d) $r = 1 + 2 \cos \theta$ is a limaçon [see Exercise 53(a)] with c = 2. This is graph III.
 - (e) Since $-1 \le \sin 3\theta \le 1$, $1 \le 2 + \sin 3\theta \le 3$, so $r = 2 + \sin 3\theta$ is never 0; that is, the curve never intersects the pole. This is graph I.
 - (f) $r = 1 + 2 \sin 3\theta$. Solving r = 0 will give us many "pole" values, so this is graph IV.

57. $r = 1/\theta \implies x = r \cos \theta = (\cos \theta)/\theta, y = r \sin \theta = (\sin \theta)/\theta \implies$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\sin\theta(-1/\theta^2) + (1/\theta)\cos\theta}{\cos\theta(-1/\theta^2) - (1/\theta)\sin\theta} \cdot \frac{\theta^2}{\theta^2} = \frac{-\sin\theta + \theta\cos\theta}{-\cos\theta - \theta\sin\theta}$$

When $\theta = \pi$, $\frac{dy}{dx} = \frac{-0 + \pi(-1)}{-(-1) - \pi(0)} = \frac{-\pi}{1} = -\pi$.

3.
$$r^{2} = 9 \sin 2\theta, r \ge 0, \ 0 \le \theta \le \pi/2.$$

$$A = \int_{0}^{\pi/2} \frac{1}{2}r^{2} d\theta = \int_{0}^{\pi/2} \frac{1}{2}(9 \sin 2\theta) d\theta = \frac{9}{2} \left[-\frac{1}{2} \cos 2\theta \right]_{0}^{\pi/2} = -\frac{9}{4}(-1-1) = \frac{9}{2}$$
11. $A = \int_{0}^{2\pi} \frac{1}{2}r^{2} d\theta = \int_{0}^{2\pi} \frac{1}{2}(3+2\cos\theta)^{2} d\theta = \frac{1}{2} \int_{0}^{2\pi} (9+12\cos\theta+4\cos^{2}\theta) d\theta$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[9+12\cos\theta+4\cdot\frac{1}{2}(1+\cos 2\theta) \right] d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} (11+12\cos\theta+2\cos 2\theta) d\theta = \frac{1}{2} \left[11\theta+12\sin\theta+\sin 2\theta \right]_{0}^{2\pi}$$

$$= \frac{1}{2} (22\pi) = 11\pi$$
(3. $\pi/2$)

21.
$$r = 1 + 2 \sin \theta (\text{rect.})$$

$$(3, \frac{\pi}{2})$$

$$r = 1 + 2 \sin \theta$$

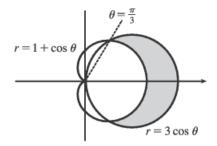
$$(\text{ut between } \theta = \frac{7\pi}{6} \text{ and } \frac{11\pi}{6} \text{ [found by solving } r = 0].$$

$$A = 2 \int_{7\pi/6}^{3\pi/2} \frac{1}{2} (1 + 2 \sin \theta)^2 d\theta = \int_{7\pi/6}^{3\pi/2} (1 + 4 \sin \theta + 4 \sin^2 \theta) d\theta = \int_{7\pi/6}^{3\pi/2} [1 + 4 \sin \theta + 4 \cdot \frac{1}{2} (1 - \cos 2\theta)] d\theta$$

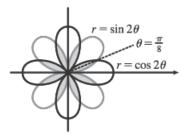
$$= [\theta - 4 \cos \theta + 2\theta - \sin 2\theta]_{7\pi/6}^{3\pi/2} = (\frac{9\pi}{2}) - (\frac{7\pi}{2} + 2\sqrt{3} - \frac{\sqrt{3}}{2}) = \pi - \frac{3\sqrt{3}}{2}$$

27.
$$3\cos\theta = 1 + \cos\theta \quad \Leftrightarrow \quad \cos\theta = \frac{1}{2} \quad \Rightarrow \quad \theta = \frac{\pi}{3} \text{ or } -\frac{\pi}{3}.$$
$$A = 2\int_0^{\pi/3} \frac{1}{2} [(3\cos\theta)^2 - (1+\cos\theta)^2] d\theta$$
$$= \int_0^{\pi/3} (8\cos^2\theta - 2\cos\theta - 1) d\theta = \int_0^{\pi/3} [4(1+\cos2\theta) - 2\cos\theta - 1] d\theta$$
$$= \int_0^{\pi/3} (3+4\cos2\theta - 2\cos\theta) d\theta = [3\theta + 2\sin2\theta - 2\sin\theta]_0^{\pi/3}$$
$$= \pi + \sqrt{3} - \sqrt{3} = \pi$$

31. $\sin 2\theta = \cos 2\theta \implies \frac{\sin 2\theta}{\cos 2\theta} = 1 \implies \tan 2\theta = 1 \implies 2\theta = \frac{\pi}{4} \implies$ $\theta = \frac{\pi}{8} \Rightarrow$ $A = 8 \cdot 2 \int_0^{\pi/8} \frac{1}{2} \sin^2 2\theta \, d\theta = 8 \int_0^{\pi/8} \frac{1}{2} (1 - \cos 4\theta) \, d\theta$ $= 4 \left[\theta - \frac{1}{4} \sin 4\theta \right]_0^{\pi/8} = 4 \left(\frac{\pi}{8} - \frac{1}{4} \cdot 1 \right) = \frac{\pi}{2} - 1$



loop traced



Weekly Homework Week 4

47.
$$L = \int_{a}^{b} \sqrt{r^{2} + (dr/d\theta)^{2}} \, d\theta = \int_{0}^{2\pi} \sqrt{(\theta^{2})^{2} + (2\theta)^{2}} \, d\theta = \int_{0}^{2\pi} \sqrt{\theta^{4} + 4\theta^{2}} \, d\theta$$
$$= \int_{0}^{2\pi} \sqrt{\theta^{2}(\theta^{2} + 4)} \, d\theta = \int_{0}^{2\pi} \theta \sqrt{\theta^{2} + 4} \, d\theta$$

Now let $u = \theta^2 + 4$, so that $du = 2\theta \, d\theta \quad \left[\theta \, d\theta = \frac{1}{2} \, du\right]$ and

$$\int_{0}^{2\pi} \theta \sqrt{\theta^{2} + 4} \, d\theta = \int_{4}^{4\pi^{2} + 4} \frac{1}{2} \sqrt{u} \, du = \frac{1}{2} \cdot \frac{2}{3} \left[u^{3/2} \right]_{4}^{4(\pi^{2} + 1)} = \frac{1}{3} \left[4^{3/2} (\pi^{2} + 1)^{3/2} - 4^{3/2} \right] = \frac{8}{3} \left[(\pi^{2} + 1)^{3/2} - 1 \right]$$

17. $\left\{\frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots\right\}$. The numerator of the *n*th term is n^2 and its denominator is n + 1. Including the alternating signs,

we get
$$a_n = (-1)^{n+1} \frac{n^2}{n+1}$$
.

01			<i>a_n</i> ≰
21.	n	$a_n = 1 + \left(-\frac{1}{2}\right)^n$	
	1	0.5000	· ·
	2	1.2500	It appears that $\lim_{n \to \infty} a_n = 1$. $\lim_{n \to \infty} \left(1 + \left(-\frac{1}{2}\right)^n\right) = \lim_{n \to \infty} 1 + \lim_{n \to \infty} \left(-\frac{1}{2}\right)^n = 1 + 0 = 1 \text{ since}$ $\lim_{n \to \infty} \left(-\frac{1}{2}\right)^n = 0 \text{ by (9).}$
	3	0.8750	
	4	1.0625	
	5	0.9688	
	6	1.0156	
	7	0.9922	
	8	1.0039	
	9	0.9980	
	10	1.0010	

23. $a_n = 1 - (0.2)^n$, so $\lim_{n \to \infty} a_n = 1 - 0 = 1$ by (9). Converges

35. a_n = cos(n/2). This sequence diverges since the terms don't approach any particular real number as n → ∞.
 The terms take on values between -1 and 1.

39.
$$a_n = \frac{e^n + e^{-n}}{e^{2n} - 1} \cdot \frac{e^{-n}}{e^{-n}} = \frac{1 + e^{-2n}}{e^n - e^{-n}} \to 0 \text{ as } n \to \infty \text{ because } 1 + e^{-2n} \to 1 \text{ and } e^n - e^{-n} \to \infty.$$
 Converges

42. $a_n = \ln(n+1) - \ln n = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right) \to \ln(1) = 0$ as $n \to \infty$ because \ln is continuous. Converges

73. $a_n = \frac{1}{2n+3}$ is decreasing since $a_{n+1} = \frac{1}{2(n+1)+3} = \frac{1}{2n+5} < \frac{1}{2n+3} = a_n$ for each $n \ge 1$. The sequence is bounded since $0 < a_n \le \frac{1}{5}$ for all $n \ge 1$. Note that $a_1 = \frac{1}{5}$.