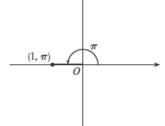

Daily Homework Week 4

9.	x	=	\sqrt{t} ,	y =	1	-t
----	---	---	--------------	-----	---	----

(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

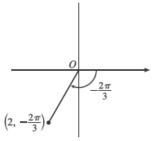

(b)
$$x=\sqrt{t} \ \Rightarrow \ t=x^2 \ \Rightarrow \ y=1-t=1-x^2.$$
 Since $t\geq 0, x\geq 0$.

So the curve is the right half of the parabola $y = 1 - x^2$.

7. (a)
$$x=1+\ln t,\ y=t^2+2;\ (1,3).$$
 $\frac{dy}{dt}=2t, \frac{dx}{dt}=\frac{1}{t}, \text{ and } \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2t}{1/t}=2t^2.$ At $(1,3),$ $x=1+\ln t=1 \ \Rightarrow \ \ln t=0 \ \Rightarrow \ t=1 \text{ and } \frac{dy}{dx}=2, \text{ so an equation of the tangent is } y-3=2(x-1),$ or $y=2x+1.$

(b)
$$x = 1 + \ln t \implies \ln t = x - 1 \implies t = e^{x - 1}$$
, so $y = t^2 + 2 = (e^{x - 1})^2 + 2 = e^{2x - 2} + 2$, and $y' = e^{2x - 2} \cdot 2$. At $(1, 3)$, $y' = e^{2(1) - 2} \cdot 2 = 2$, so an equation of the tangent is $y - 3 = 2(x - 1)$, or $y = 2x + 1$.

3. (a)

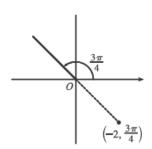


$$x = 1\cos \pi = 1(-1) = -1$$
 and

$$y = 1 \sin \pi = 1(0) = 0$$
 give us

the Cartesian coordinates (-1, 0).

(b)

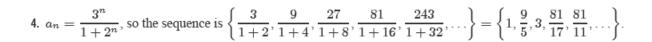


$$x = 2\cos\left(-\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2}\right) = -1$$
 and

$$y=2\sin\left(-\tfrac{2\pi}{3}\right)=2\left(-\tfrac{\sqrt{3}}{2}\right)=-\sqrt{3}$$

give us $\left(-1, -\sqrt{3}\right)$.

(c)



$$x=-2\cos\frac{3\pi}{4}=-2\Bigl(-\frac{\sqrt{2}}{2}\Bigr)=\sqrt{2}$$
 and

$$y = -2\sin\frac{3\pi}{4} = -2\left(\frac{\sqrt{2}}{2}\right) = -\sqrt{2}$$

gives us $(\sqrt{2}, -\sqrt{2})$.

Daily Homework Week 4

