15. (a) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n}{3 n+1}=\frac{2}{3}$, so the sequence $\left\{a_{n}\right\}$ is convergent by (11.1.1).
(b) Since $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{3} \neq 0$, the series $\sum_{n=1}^{\infty} a_{n}$ is divergent by the Test for Divergence.
16. $4+3+\frac{9}{4}+\frac{27}{16}+\cdots$ is a geometric series with ratio $\frac{3}{4}$. Since $|r|=\frac{3}{4}<1$, the series converges to $\frac{a}{1-r}=\frac{4}{1-3 / 4}=16$.
17. $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}}+\frac{3^{n}}{2^{n}}\right)=\sum_{n=1}^{\infty}\left[\left(\frac{1}{2}\right)^{n}+\left(\frac{3}{2}\right)^{n}\right]=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}$. The first series is a convergent geometric series $\left(|r|=\frac{1}{2}<1\right)$, but the second series is a divergent geometric series $\left(|r|=\frac{3}{2} \geq 1\right)$, so the original series is divergent.
18. $\sum_{n=1}^{\infty} \arctan n$ diverges by the Test for Divergence since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \arctan n=\frac{\pi}{2} \neq 0$.
19. $\sum_{n=1}^{\infty} \frac{1}{e^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}$ is a geometric series with first term $a=\frac{1}{e}$ and ratio $r=\frac{1}{e}$. Since $|r|=\frac{1}{e}<1$, the series converges to $\frac{1 / e}{1-1 / e}=\frac{1 / e}{1-1 / e} \cdot \frac{e}{e}=\frac{1}{e-1}$. By Example 7, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$. Thus, by Theorem 8(ii),

$$
\sum_{n=1}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right)=\sum_{n=1}^{\infty} \frac{1}{e^{n}}+\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{e-1}+1=\frac{1}{e-1}+\frac{e-1}{e-1}=\frac{e}{e-1} .
$$

46. For the series $\sum_{n=1}^{\infty}\left(\cos \frac{1}{n^{2}}-\cos \frac{1}{(n+1)^{2}}\right)$,

$$
\begin{aligned}
s_{n} & =\sum_{i=1}^{n}\left(\cos \frac{1}{i^{2}}-\cos \frac{1}{(i+1)^{2}}\right)=\left(\cos 1-\cos \frac{1}{4}\right)+\left(\cos \frac{1}{4}-\cos \frac{1}{9}\right)+\cdots+\left(\cos \frac{1}{n^{2}}-\cos \frac{1}{(n+1)^{2}}\right) \\
& =\cos 1-\cos \frac{1}{(n+1)^{2}} \quad \text { [telescoping series] }
\end{aligned}
$$

Thus, $\sum_{n=1}^{\infty}\left(\cos \frac{1}{n^{2}}-\cos \frac{1}{(n+1)^{2}}\right)=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\cos 1-\cos \frac{1}{(n+1)^{2}}\right)=\cos 1-\cos 0=\cos 1-1$.
Converges
11. $1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\frac{1}{125}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. This is a p-series with $p=3>1$, so it converges by (1).
19. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}=\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$ since $\frac{\ln 1}{1}=0$. The function $f(x)=\frac{\ln x}{x^{3}}$ is continuous and positive on $[2, \infty)$.
$f^{\prime}(x)=\frac{x^{3}(1 / x)-(\ln x)\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}}=\frac{x^{2}-3 x^{2} \ln x}{x^{6}}=\frac{1-3 \ln x}{x^{4}}<0 \Leftrightarrow 1-3 \ln x<0 \Leftrightarrow \ln x>\frac{1}{3} \Leftrightarrow$
$x>e^{1 / 3} \approx 1.4$, so f is decreasing on $[2, \infty)$, and the Integral Test applies.
$\int_{2}^{\infty} \frac{\ln x}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\ln x}{x^{3}} d x \stackrel{(\star)}{=} \lim _{t \rightarrow \infty}\left[-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left[-\frac{1}{4 t^{2}}(2 \ln t+1)+\frac{1}{4}\right] \stackrel{(\star \star)}{=} \frac{1}{4}$, so the series $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$ converges.
(\star): $u=\ln x, d v=x^{-3} d x \quad \Rightarrow \quad d u=(1 / x) d x, v=-\frac{1}{2} x^{-2}$, so
$\int \frac{\ln x}{x^{3}} d x=-\frac{1}{2} x^{-2} \ln x-\int-\frac{1}{2} x^{-2}(1 / x) d x=-\frac{1}{2} x^{-2} \ln x+\frac{1}{2} \int x^{-3} d x=-\frac{1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}+C$.
($\star \star): \lim _{t \rightarrow \infty}\left(-\frac{2 \ln t+1}{4 t^{2}}\right) \stackrel{H}{=}-\lim _{t \rightarrow \infty} \frac{2 / t}{8 t}=-\frac{1}{4} \lim _{t \rightarrow \infty} \frac{1}{t^{2}}=0$.
34. (a) $\sum_{n=2}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\frac{1}{1^{2}}\left[\right.$ subtract $\left.a_{1}\right]=\frac{\pi^{2}}{6}-1$
(b) $\sum_{n=3}^{\infty} \frac{1}{(n+1)^{2}}=\sum_{n=4}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}\right)=\frac{\pi^{2}}{6}-\frac{49}{36}$
(c) $\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=\sum_{n=1}^{\infty} \frac{1}{4 n^{2}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{4}\left(\frac{\pi^{2}}{6}\right)=\frac{\pi^{2}}{24}$
36. (a) $f(x)=1 / x^{4}$ is positive and continuous and $f^{\prime}(x)=-4 / x^{5}$ is negative for $x>0$, and so the Integral Test applies.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}} \approx s_{10}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots+\frac{1}{10^{4}} \approx 1.082037 .
$$

$R_{10} \leq \int_{10}^{\infty} \frac{1}{x^{4}} d x=\lim _{t \rightarrow \infty}\left[\frac{1}{-3 x^{3}}\right]_{10}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{3 t^{3}}+\frac{1}{3(10)^{3}}\right)=\frac{1}{3000}$, so the error is at most $0.000 \overline{3}$.
(b) $s_{10}+\int_{11}^{\infty} \frac{1}{x^{4}} d x \leq s \leq s_{10}+\int_{10}^{\infty} \frac{1}{x^{4}} d x \Rightarrow s_{10}+\frac{1}{3(11)^{3}} \leq s \leq s_{10}+\frac{1}{3(10)^{3}} \Rightarrow$ $1.082037+0.000250=1.082287 \leq s \leq 1.082037+0.000333=1.082370$, so we get $s \approx 1.08233$ with error ≤ 0.00005.
(c) The estimate in part (b) is $s \approx 1.08233$ with error ≤ 0.00005. The exact value given in Exercise 35 is $\pi^{4} / 90 \approx 1.082323$. The difference is less than 0.00001 .
(d) $R_{n} \leq \int_{n}^{\infty} \frac{1}{x^{4}} d x=\frac{1}{3 n^{3}}$. So $R_{n}<0.00001 \Rightarrow \frac{1}{3 n^{3}}<\frac{1}{10^{5}} \Rightarrow 3 n^{3}>10^{5} \Rightarrow n>\sqrt[3]{(10)^{5} / 3} \approx 32.2$, that is, for $n>32$.
4. $\frac{n^{3}}{n^{4}-1}>\frac{n^{3}}{n^{4}}=\frac{1}{n}$ for all $n \geq 2$, so $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-1}$ diverges by comparison with $\sum_{n=2}^{\infty} \frac{1}{n}$, which diverges because it is a p-series with $p=1 \leq 1$ (the harmonic series).
17. Use the Limit Comparison Test with $a_{n}=\frac{1}{\sqrt{n^{2}+1}}$ and $b_{n}=\frac{1}{n}$:
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\left(1 / n^{2}\right)}}=1>0$. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$.
27. Use the Limit Comparison Test with $a_{n}=\left(1+\frac{1}{n}\right)^{2} e^{-n}$ and $b_{n}=e^{-n}: \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}=1>0$. Since $\sum_{n=1}^{\infty} e^{-n}=\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ is a convergent geometric series $\left[|r|=\frac{1}{e}<1\right]$, the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}$ also converges.
30. $\frac{n!}{n^{n}}=\frac{1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) n}{n \cdot n \cdot n \cdots \cdot n \cdot n} \leq \frac{1}{n} \cdot \frac{2}{n} \cdot 1 \cdot 1 \cdots \cdot 1$ for $n \geq 2$, so since $\sum_{n=1}^{\infty} \frac{2}{n^{2}}$ converges $[p=2>1], \sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges also by the Comparison Test.
7. $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n-1}{2 n+1}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$. Now $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3-1 / n}{2+1 / n}=\frac{3}{2} \neq 0$. Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (in fact the limit does not exist), the series diverges by the Test for Divergence.
13. $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} e^{2 / n}=e^{0}=1$, so $\lim _{n \rightarrow \infty}(-1)^{n-1} e^{2 / n}$ does not exist. Thus, the series $\sum_{n=1}^{\infty}(-1)^{n-1} e^{2 / n}$ diverges by the Test for Divergence.
23. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{6}}$ satisfies (i) of the Alternating Series Test because $\frac{1}{(n+1)^{6}}<\frac{1}{n^{6}}$ and (ii) $\lim _{n \rightarrow \infty} \frac{1}{n^{6}}=0$, so the series is convergent. Now $b_{5}=\frac{1}{5^{6}}=0.000064>0.00005$ and $b_{6}=\frac{1}{6^{6}} \approx 0.00002<0.00005$, so by the Alternating Series Estimation Theorem, $n=5$. (That is, since the 6 th term is less than the desired error, we need to add the first 5 terms to get the sum to the desired accuracy.)
4. $b_{n}=\frac{n}{n^{2}+4}>0$ for $n \geq 1,\left\{b_{n}\right\}$ is decreasing for $n \geq 2$, and $\lim _{n \rightarrow \infty} b_{n}=0$, so $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+4}$ converges by the Alternating Series Test. To determine absolute convergence, choose $a_{n}=\frac{1}{n}$ to get $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 / n}{n /\left(n^{2}+4\right)}=\lim _{n \rightarrow \infty} \frac{n^{2}+4}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1+4 / n^{2}}{1}=1>0$, so $\sum_{n=1}^{\infty} \frac{n}{n^{2}+4}$ diverges by the Limit Comparison Test with the harmonic series. Thus, the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+4}$ is conditionally convergent.
8. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left[\frac{(n+1)!}{100^{n+1}} \cdot \frac{100^{n}}{n!}\right]=\lim _{n \rightarrow \infty} \frac{n+1}{100}=\infty$, so the series $\sum_{n=1}^{\infty} \frac{n!}{100^{n}}$ diverges by the Ratio Test.
12. $\left|\frac{\sin 4 n}{4^{n}}\right| \leq \frac{1}{4^{n}}$, so $\sum_{n=1}^{\infty}\left|\frac{\sin 4 n}{4^{n}}\right|$ converges by comparison with the convergent geometric series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\left[|r|=\frac{1}{4}<1\right]$.

Thus, $\sum_{n=1}^{\infty} \frac{\sin 4 n}{4^{n}}$ is absolutely convergent.
20. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(-2)^{n}}{n^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{2}{n}=0<1$, so the series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{n}}$ is absolutely convergent by the Root Test.
21. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{2+1 / n^{2}}=\frac{1}{2}<1$, so the series $\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}\right)^{n}$ is absolutely convergent by the Root Test.
4. $b_{n}=\frac{n}{n^{2}+2}>0$ for $n \geq 1$. $\quad\left\{b_{n}\right\}$ is decreasing for $n \geq 2$ since $\left(\frac{x}{x^{2}+2}\right)^{\prime}=\frac{\left(x^{2}+2\right)(1)-x(2 x)}{\left(x^{2}+2\right)^{2}}=\frac{2-x^{2}}{\left(x^{2}+2\right)^{2}}<0$ for $x \geq \sqrt{2}$. Also, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}+2}=\lim _{n \rightarrow \infty} \frac{1 / n}{1+2 / n^{2}}=0$. Thus, the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+2}$ converges by the Alternating Series Test.
8. $\sum_{k=1}^{\infty} \frac{2^{k} k!}{(k+2)!}=\sum_{k=1}^{\infty} \frac{2^{k}}{(k+1)(k+2)}$. Using the Ratio Test, we get
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{2^{k+1}}{(k+2)(k+3)} \cdot \frac{(k+1)(k+2)}{2^{k}}\right|=\lim _{k \rightarrow \infty}\left(2 \cdot \frac{k+1}{k+3}\right)=2>1$, so the series diverges.
Or: Use the Test for Divergence.
14. $\left|\frac{\sin 2 n}{1+2^{n}}\right| \leq \frac{1}{1+2^{n}}<\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$, so the series $\sum_{n=1}^{\infty}\left|\frac{\sin 2 n}{1+2^{n}}\right|$ converges by comparison with the geometric series $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ with $|r|=\frac{1}{2}<1$. Thus, the series $\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}$ converges absolutely, implying convergence.
36. Note that $(\ln n)^{\ln n}=\left(e^{\ln \ln n}\right)^{\ln n}=\left(e^{\ln n}\right)^{\ln \ln n}=n^{\ln \ln n}$ and $\ln \ln n \rightarrow \infty$ as $n \rightarrow \infty$, so $\ln \ln n>2$ for sufficiently large n. For these n we have $(\ln n)^{\ln n}>n^{2}$, so $\frac{1}{(\ln n)^{\ln n}}<\frac{1}{n^{2}}$. Since $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges $[p=2>1$], so does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ by the Comparison Test.
4. If $a_{n}=\frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$, then
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{(-1)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1) x \sqrt[3]{n}}{\sqrt[3]{n+1}}\right|=\lim _{n \rightarrow \infty} \sqrt[3]{\frac{1}{1+1 / n}}|x|=|x|$. By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$ converges when $|x|<1$, so $R=1$. When $x=1$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}$ converges by the Alternating Series Test. When $x=-1$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges since it is a p-series $\left(p=\frac{1}{3} \leq 1\right)$. Thus, the interval of convergence is $(-1,1]$.
12. If $a_{n}=\frac{x^{n}}{n 3^{n}}$, then

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{3}\left(\frac{n}{n+1}\right)=\lim _{n \rightarrow \infty} \frac{|x|}{3}\left(\frac{1}{1+1 / n}\right)=\frac{1}{3}|x|
$$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}$ converges when $\frac{1}{3}|x|<1 \Leftrightarrow|x|<3$, so $R=3$. When $x=3$, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series. When $x=-3$, the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$ is the convergent alternating harmonic series (multiplied by -1$)$. Thus, the interval of convergence is $[-3,3)$.
18. If $a_{n}=\frac{n}{4^{n}}(x+1)^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(x+1)^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{n(x+1)^{n}}\right|=\frac{|x+1|}{4} \lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{|x+1|}{4}$. By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(x+1)^{n}$ converges when $\frac{|x+1|}{4}<1 \quad \Leftrightarrow \quad|x+1|<4 \quad[R=4] \Leftrightarrow$ $-4<x+1<4 \Leftrightarrow-5<x<3$. When $x=-5$ or 3 , both series $\sum_{n=1}^{\infty}(\mp 1)^{n} n$ diverge by the Test for Divergence since $\lim _{n \rightarrow \infty}\left|(\mp 1)^{n} n\right|=\infty$. Thus, the interval of convergence is $I=(-5,3)$.

Weekly Homework 5

30. We are given that the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is convergent for $x=-4$ and divergent when $x=6$. So by Theorem 3it converges for at least $-4 \leq x<4$ and diverges for at least $x \geq 6$ and $x<-6$. Therefore:
(a) It converges when $x=1$; that is, $\sum c_{n}$ is convergent.
(b) It diverges when $x=8$; that is, $\sum c_{n} 8^{n}$ is divergent.
(c) It converges when $x=-3$; that is, $\sum c_{n}\left(-3^{n}\right)$ is convergent.
(d) It diverges when $x=-9$; that is, $\sum c_{n}(-9)^{n}=\sum(-1)^{n} c_{n} 9^{n}$ is divergent.
