Math 428 Graph Theory Homework Set #8

Whitney & Menger's Theorem

- 1. Assume G is nonseparable and let P be an x y path in G. Must there exist another x y path that is internally disjoint from P?
- 2. Recall the hypercube Q_n , i.e., the graph whose vertices are the set of all binary words of length n where two words are adjacent provided they differ in exactly one position. Earlier in the course we showed that $\delta(Q_n) = n$. So

$$\kappa(Q_n) \le \lambda(Q_n) \le \delta(Q_n) = n.$$

Use Whitney's Theorem to prove that $\kappa(Q_n) \ge n$. Conclude that

$$\kappa(Q_n) = \lambda(Q_n) = \delta(Q_n) = n.$$

3. In class we talked about the following theorem:

Theorem (9.5). Let $\kappa(G) \ge \ell$ and x_1, \ldots, x_ℓ be distinct vertices in G. Then x_1, \ldots, x_ℓ lie on a common cycle.

To show the converse of Theorem 9.5 is false, find, for each $\ell \geq 3$, a graph G_{ℓ} so that $\ell > \kappa(G_{\ell})$ and any set of ℓ vertices in G_{ℓ} lie on a common cycle.

- 4. Let G be any graph such that $\kappa(G) \ge 5$. Fix distinct vertices u, v, and w. Prove that there exists two cycles C and C' that only have u and v in common and do not contain w.
- 5. Let G be any graph with $\kappa(G) \ge \ell$. Let U and W be disjoint subsets of V(G) with $|U| = \ell = |W|$. Prove that there exists ℓ disjoint paths connecting U and W.

Optional Problems

1. Fix $\ell \geq 2$. Show that $\kappa(G) \geq \ell$ if and only if for each set S of ℓ distinct vertices and each choice of distinct $x, y \in S$ there is a cycle in G containing x and y but no vertex from $S - \{x, y\}$.