Math 428 Graph Theory Homework Set #7

Vertex & Edge Connectivity

- 1. In the Peterson graph PG find a smallest edge-cut and a smallest vertex-cut. Determine $\kappa(PG)$ and $\lambda(PG)$.
- 2. Let G be any graph of order n and size m. Assuming that $\kappa(G) \ge k$, for some integer k, show that $m \ge kn/2$.
- 3. Let G be any nontrivial graph with vertex v. Prove or disprove the following statement. Either $\kappa(G - v) = \kappa(G)$ or $\kappa(G - v) = \kappa(G) - 1$.
- 4. Give an example of a graph G with
 - (a) $\kappa(G) = 2$, $\lambda(G) = 2$, and $\delta(G) = 3$.
 - (b) $\kappa(G) = 1, \lambda(G) = 2, \text{ and } \delta(G) = 3.$
 - (c) $\kappa(G) \neq \lambda(G)$ and G is 4-regular.
- 5. Let G be a graph of order n and let k be an integer such that $1 \le k \le n-1$. Prove that if $\delta(G) \ge (n+k-2)/2$, then $\kappa(G) \ge k$.
- 6. Let G be a connected graph such that for every edge e there exists cycles C and C' whose only common edge is e. Prove that $\lambda(G) \geq 3$. Use this to show that $\lambda(PG) = 3$.
- 7. Let G be a graph with diameter 2. Show that if Σ is a smallest edge-cut, then at least one of the components of $G \Sigma$ is K_1 or $K_{\delta}(G)$. (Hint: Consider the proof of Theorem 9.1.)

Optional Problems

1. Let $0 < a \leq b \leq c$ be positive integers. Prove that there exists a graph G with $\kappa(G) = a, \lambda(G) = b$, and $\delta(G) = c$.