Math 428 Graph Theory

Eulerian Graphs

- 1. Give an example of a graph G such that G has an Eulerian trail but, for some edge e, G e is Eulerian.
- 2. Suppose that G is an r-regular graph of order n such that G and \overline{G} are both connected. Is it possible that neither G nor \overline{G} is Eulerian?
- 3. Let G and H be non-Eulerian connected regular graphs. Let F be the graph obtained by adding a new vertex x and joining x to each vertex in G + H. Show that F is Eulerian.
- 4. Show that if T is a tree containing at least one vertex of degree 2, then \overline{T} is not Eulerian.
- 5. Let W be a closed walk in a graph G. Let H be the subgraph consisting of all the edges that appear an odd number of times in W. Prove that for each vertex $v \in V(H)$, $\deg_H(v)$ is even.