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Permutations

Definition
A permutation of length n is a rearrangement of the numbers

1,2,...,n.

Notation
Let S, denote the set of all permutations of length n.

Example

S3 = {123,132, 213,231, 312, 321},

and

|Sn| = n!
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Stack Sorting

Question
Why is o =3 1 2 5 4 stack-sortable, while m =3 1452 js NOT?

Theorem (D. Knuth 1968)

7 is NOT stack-sortable <= m has three entries whose relative
ordering is “231".

Examples

m=3145 2 is NOT stack-sortable
= m contains the pattern 231

a=31254 s stack-sortable
= « avoid the pattern 231
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Its easier with pictures!

» 7 contains 123
m=31452 +— X » 7 contains 213

X » 7 avoids 321

Notation
Let S,(7) be the set of permutations of length n that avoid 7.
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Permutation Patterns

Example (Patterns of length 2)
What permutations avoid 217

Sy = {12,21}
= Sy(21) = {12}
Ss = {123,132, 213,231,312, 321}

= S3(21) = {123}.

In general,
Sn(21) = {123...n}.

S5n(12) = {n...321}.
= 12 is Wilf-equivalent to 21



Patterns of length 3

What permutations avoid 3217



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}

» 53(321) = {123,132, 213,231,312}



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}
» 53(321) = {123,132, 213,231,312}
153(321)| =5

154(321)] = 14
155(321)| = 42



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}

» 53(321) = {123,132, 213,231,312}

53(321)| = 5
154(321)] = 14
155(321)| = 42

1 2n
(321)] =
[9n(321)) n+1<n>



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}

» 53(321) = {123,132, 213,231,312}

155(321) = 5
|S4(321)] = 14
155(321)| = 42
1
|Sn(321)| = <2n> = nth Catalan number
n+1\n



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}

> S3(321) = {123,132,213, 231, 312}

155(321) = 5
154(321)] = 14
155(321)| = 42
1
|Sn(321)| = <2n> = nth Catalan number
n+1\n

In fact, this is true for ALL length 3 patterns!!



Patterns of length 3

What permutations avoid 3217

S3 = {123,132, 213,231, 312,321}

> S3(321) = {123,132,213, 231, 312}

155(321) = 5

154(321)] = 14

155(321)| = 42

|Sn(321)| = 1<2n> = nth Catalan number
n+1\n

In fact, this is true for ALL length 3 patterns!!
> ALL length 3 patterns are Wilf-equivalent
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Patterns of length 4
Things get messy...

n= 5 6 | 7 8 9

5,(2314)[ | 103 | 512 | 2740 | 15485 | 91245
15,(1234)[ | 103 | 513 | 2761 | 15767 | 94359
15,(1324)[ | 103 | 513 | 2762 | 15793 | 94776

= NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314

What is known?

> |. Gessel (1990) gave a formula for |S,(1234)]
» M. Béna (1997) gave a formula for |S5,(2314)|

Open Problem

1234

Find a formula for |S,(1324)].

1324
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Rook Placements

Definition
A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of markers
with EXACTLY one in each row and column.

Notation
R = set of all f.r.p.’s on the fixed board F
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» This f.r.p. contains the pattern 312
» This f.r.p. avoids the pattern 231

Notation

» Re(7) = set of all f.r.p. on F that avoid .
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Rook Placements

Definition
We say two patterns o, 7 € S are shape-Wilf-equivalent and
write o ~ 7 if for every Ferrers board F

RF(o)] = [Re(T)]-

Note: shape-Wilf equivalence = Wilf-equivalence.

» 123...k ~ k...321 (J. Backlin, J. West, and G. Xin, 2000)
» 231 ~ 312 (Z. Stankova and J. West, 2002)

- Complicated proof = can’t count things
> We give a simple proof that 231 ~ 312

- Can count things!
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Dyck Paths

=N W A

‘1234567891011121314

A Dyck path of size n is a path that:
» starts at the origin
» ends at the point (2n,0)

> never goes below the x-axis
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Labeled Dyck paths

We label the Dyck path so that:
» Monotonicity
- 4+1/0 up step and —1/0 down step
» Zero Condition
- All zeros lie precisely on the x-axis
» Tunnel Property
- "Left” < “Right”



Our proof of 231 ~ 312

An outline



Our proof of 231 ~ 312

An outline

1. 231-avoiding rook placement — Tunnel property



Our proof of 231 ~ 312

An outline
1. 231-avoiding rook placement — Tunnel property
2. Tunnel Property — Reverse Tunnel Property



Our proof of 231 ~ 312

An outline
1. 231-avoiding rook placement — Tunnel property
2. Tunnel Property — Reverse Tunnel Property

3. Reverse Tunnel Property — 312-avoiding rook placement



Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property



Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property

L 2




Our proof of 231 ~ 312

1. 231-avoiding f.r.p. = Tunnel property




Our proof of 231 ~ 312

2. Tunnel property = Reverse tunnel property




Our proof of 231 ~ 312

2. Tunnel property = Reverse tunnel property




Our proof of 231 ~ 312

2. Tunnel property = Reverse tunnel property

A : A




Our proof of 231 ~ 312

2. Tunnel property = Reverse tunnel property




Our proof of 231 ~ 312

2. Tunnel property = Reverse tunnel property




Our proof of 231 ~ 312

3. Reverse tunnel property = 312-avoiding f.r.p.




Our proof of 231 ~ 312

3. Reverse tunnel property = 312-avoiding f.r.p.




Our proof of 231 ~ 312

3. Reverse tunnel property = 312-avoiding f.r.p.

X

1V

RF(312)

Theorem (Bloom—-Saracino '11)

This mapping is a bijection between R(231) and Rr(312).
= 231 and 312 are shape-Wilf-equivalent.
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Generating Functions
The generating function for a sequence of integers

a0,41,4d2,4d3,. ..

is the “formal” series
o0
E anz".
n=0

» “A generating function is a clothesline on which we hang up a
sequence of numbers for display” - H. Wilf
» We do not worry about convergence!

Example
Let D, be the set of Dyck paths with length n.

> ., 1—1—-4z
C(Z):Z‘Dn|z = T
n=0

=14 2+4222+523+147* + 4275+ ...
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Enumerative Results: 2314-Avoiding Permutations

In 1990 Béna proved the following celebrated result

> 32z
Sn(2314)[2" = .
g' A = e, —82 — (1 — 822
Our Proof
X
X
| X |
6257413 | S
X
X
X

5,(2314) Re(231)
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where C(z) is the generating function for the Catalan
numbers.
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New Enumerative Results

» In 2012, D. Callan and V. Kotesovec conjectured that

ot
1-C(zC(2))

=14+2z4+22+6224+2223+...

D " 15n(2314,1234)|2" =
n=0

where C(z) is the generating function for the Catalan
numbers.

» All 231-avoiding f.r.p. are counted by

54z

= 2 3 4 ..
1+36z—(1_122)3/2_1+z+3z + 14z° + 83z" +

» New enumerative results in the theory of perfect matchings
and set partitions.
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