
Modified Growth Diagrams and the BWX Map φ∗

Jonathan Bloom

Dartmouth College

June, 2011



Definition of the BWX map φ∗

First we define the (intermediate) map

φ : Sn → Sn

which is implicitly dependent on some fixed k > 2.

For any σ ∈ Sn

1. Order the k . . . 1−patterns σi1 . . . σik in σ lexicographically
(according to the σj ’s, not the j ’s)

2. Let φ(σ) be obtained from σ by taking the smallest
k . . . 1−pattern

σi1σi2 . . . σik

and placing in positions i1 . . . ik the values

σi2 . . . σikσi1 ,

respectively, and leaving all other entries of σ fixed.
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Definition of the BWX map φ∗

Now the map of interest

φ∗ : Sn → Sn(k . . . 1)

is given by
σ 7−→ φm(σ)

for some m (depending on σ) such that φm+1(σ) = φm(σ).

In other words, φ∗ is obtained by repeatedly applying the map φ
until no k . . . 1-pattern remains.
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An Example of φ∗

Let k = 3. For σ = 4 5 3 1 2 we obtain φ∗(σ) as follows:

1

1

φ2(σ) = 3 4 1 2 51

1

φ∗(σ) = φ2(σ) = 3 4 1 2 5
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History of φ∗

I The transformation φ∗ was introduced by Backelin, West, Xin
in their paper “Wilf-equivalence for singleton classes” as a
tool to prove their main result that

|Sn(12 . . . kρ)| = |Sn(k . . . 1ρ)|

where n ≥ k + l and ρ is an permutation of {k + 1, . . . , k + l}.
I Later Bousquet-Mélou and Steingŕımsson proved that

|In(12 . . . kρ)| = |In(k . . . 1ρ)|

by proving the commutation result that φ∗(σ−1) = φ∗(σ)−1

I This proof is long and difficult.
I Consequently, in their paper they ask for a better description

of the map φ∗ “on which the commutation theorem would
become obvious.”
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History of φ∗ Continued

I Lastly, C. Krattenthaler publishes the paper: “Growth Diagrams,

and increasing and decreasing chains in fillings of Ferrers shapes”

I Demonstrates a bijection using Fomin’s Growth Diagrams
I It trivially commutes with inverses and...
I Provides alternative proofs of the results by BWX and by

Bousquet-Mélou and Steingŕımsson.

I In this paper Krattenthaler asks (Problem # 4) whether the
map φ∗ and growth diagrams are at all related.

We answer both Krattenthaler and Bousquet-Mélou and
Steingŕımsson’s questions by providing a reformulation of φ∗ in
terms of growth diagrams that makes the commutation result
obvious.
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Ferrers Boards & Placements

We will work in this context since this is the context in which
Bousquet-Mélou and Steingŕımsson and Krattenthaler worked.

Definition (Informal): A Ferrers Board F is an array of squares
obtained by removing some “northeast chunk” from the nxn array
of squares leaving a staircase shape.

Definition: A rook placement P on a Ferrers Board F is a subset
of F that contains at most one square from each row and column
of F . (We indicate the squares in a placement by dots.)
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Ferrers Boards, Placements, & φ∗

We need to define φ∗(P) for a pair (P,F ).

I P is just a partial permutation so we could apply φ∗ to this
partial permutation.

I Not good as this ignores our Ferrers board F .

I We add the caveat that we only consider k . . . 1-patterns that
are contained in a rectangular sub-board of F .

Example:

−−−→
φ

•
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Motivation for the Reformulation of φ∗

Consider the Schensted correspondence:

π =

(
1 2 6 7 8
4 5 3 1 2

)

P =
1 2
3 5
4

Q =
1 2
6 8
7

Definition: The shape of P and Q is the partition (λ1λ2 . . . λt)
such that the top row of P and Q have λ1 entries, the second row
has λ2 entries, and so on.

I In our example the shape is (221).

Theorem: The length of the longest decreasing subsequence in π
is t.

I Here the subsequence 431 is longest and t = 3.
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Fomin’s Growth Diagram Construction

Given a placement P on a Ferrers board F a growth diagram
assign partitions to all the corners of all the squares in F in the
following way:

I Start by assigning the empty partition ∅ on the left and bottom

edges of F . •
•

•
•

•
•

•
•
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∅ ∅ ∅ ∅ ∅∅ ∅ ∅ ∅

I To determine the partitions on the other corners we use the

following rules:
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Fomin’s Growth Diagram Construction

Given partitions

SW

NW

SE

if SE 6= NW
1

2

11

21 = SE ∪ NW

if SW = NW = SE
11

11

11

11 = NW

11

11

11

21 = NW + 1 top row

•

if SW 6= NW = SE
1

11

11

111 = NW + 001
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An Example
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Theorem: Each partition is the shape of the recording/insertion
tableaux corresponding to the partial permutation southwest of the
partition’s location.
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completely determines the placement P.
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I As the partitions correspond to the shape of the recording/insertion
tableaux the modified rule effectively “removes” decreasing
subsequence with length ≥ k from our placement P.
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Main Theorem: For any rook placement P on a Ferrers board F ,

seqk(P,F ) = seq(φ∗(P),F )
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Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Our Commutation Result

Definition: For any rook placement P on F , the inverse P ′ of P is
the placement on the conjugate board F ′ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P ′,F ) = rev(seq(P,F ))

Corollary: For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P))′

Proof. By the Main Theorem and the note above we have:

seq(φ∗(P ′),F ) = seqk(P ′,F )

= rev(seqk(P,F ))

= rev(seq(φ∗(P),F )

= seq((φ∗(P))′,F )

Hence we conclude that φ∗(P ′) = (φ∗(P))′.



Idea Behind Main Theorem

GDA3 on (P,F ) GDA3 on (φ(P),F )

•
•

•
•

•
•

•
•

1 1 1 11

1

1

11

1

1

1

1 2

2

2

2

2

2

2 2 2

2

3

3

3 3

4

11

11 21

22

22 32

21

21

31

∅

∅

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅ ∅∅ ∅ ∅ ∅

•
•

•
•

•
•

•
•

∅

∅

∅

∅

∅

∅

∅

∅

∅

1

1

1

1

1

∅

1

∅

∅

1

2

2

2

2

1

∅

∅

∅

2

2

2

1

∅

∅

∅

3

1 1

2

1

∅

∅

3

3

∅

1

2

3

4

1

∅

∅

∅

11

11

21

31

1

1

∅

1

11

1

∅

21

22

2

1

21

22

32

∅

I The red rectangle is the smallest rectangle containing markers moved by φ.

I The partitions created by GDAk along the red are the same in P and φ(P).

I So GDAk , outside the red, is identical on P and φ(P) and we may conclude

seqk (P,F ) = seqk (φ(P),F )
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Idea Behind Main Theorem Continued

So...

seqk(P,F ) = seqk(φ(P),F )

= seqk(φ2(P),F )

= seqk(φ3(P),F )
...

= seqk(φm(P),F )

= seqk(φ∗(P),F )

Yet, φ∗(P) has no decreasing subsequence of length ≥ k hence
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