Modified Growth Diagrams, Permutation Pivots, and the BXW Map ϕ^*

Overview

In their paper [1] on Wilf-equivalence for singleton classes, Backelin, Xin, and West introduce a transformation ϕ^* , defined by an iterative process and operating on (all) full rook placements on Ferrers boards. In [3], Bousquet-Mélou and Steingrímsson prove the analogue of the main result of [1] in the context of involutions, and in so doing they must prove that ϕ^* commutes with the operation of taking inverses. The proof of this commutation result is long and difficult, and Bousquet-Mélou and Steingrámsson ask if ϕ^* might be reformulated in such a way as to make this result obvious. In the present paper we provide such a reformulation of ϕ^* , by modifying the growth diagram algorithm of Fomin [4,5]. This also answers a question of Krattenthaler [6, problem 4], who notes that a bijection defined by the unmodified Fomin algorithm obviously commutes with inverses, and asks what the connection is between this bijection and ϕ^* .

1. Definition of ϕ^*

The map $\phi^* : S_n \to S_n(k \dots 1)$ is most clearly defined via an example. Fix k = 3 and $\pi = 45312.$

First identify the left-most 321-pattern in σ and cycle this pattern forward: $645321 \longrightarrow \phi(\pi) = 435621$

Now we repeat the process until it naturally stops:

 $435621 \longrightarrow \phi^2(\pi) = 325641$ $325641 \longrightarrow \phi^3(\pi) = 215643$

 $215643 \longrightarrow \phi^4(\pi) = 214635$

Finally we have our definition

 $\phi^*(645321) = \phi^4(\pi) = 214635$

Next observe that $(645321)^{-1} = 654231$ and a similar calculation yields that $\phi^*((645321)^{-1}) = \phi^*(654231) = 215364 = (214635)^{-1} = \phi^*(645321)^{-1}$

2. The Robinson-Schensted Correspondence

Recall that the Robinson-Schensted Correspondence sets up a bijection

$$S_n \longleftrightarrow Y_n^2$$

where Y_n^2 denotes the set of all pairs of standard Young tableaux that have the same shape. The next well-known theorem plays a central theme in our reformulation of ϕ^* .

Theorem: (Schensted)

Fix a permutation π and let (P,Q) be its image under this correspondence. If λ is the shape of P and Q then λ_1 is the length of a longest increasing subsequence in π .

3. Growth Diagrams

Our reformulation of ϕ^* will be accomplished by modifying Fomin's [4,5, see also 6]] construction (GDA) of the growth diagram of a rook placement P on a Ferrers board F.

Fomin's construction assigns partitions to the corners of all the squares in F, using the markers of P. We start by assigning the empty partition \emptyset to each corner on the left and bottom edges of F. We then assign partitions to the other corners inductively. Assuming that the northwest, southwest, and southeast corners of a square (i, j) have been assigned partitions NW, SW, and SE, we assign to the northeast corner the partition NEdetermined by the following rules.

Jonathan Bloom and Dan Saracino Advisor: Sergi Elizalde

Department of Mathematics, Dartmouth College

Fact: The partition assigned to the northeast corner of (i, j) is the shape of the Robinson-Schensted tableaux for the partial permutation resulting from the restriction of P to the rectangle R(i, j).

Example:

4. Our Reformulation of ϕ^*

Our observation was to modify the growth diagram algorithm in the following way. We retains rules (a), (b), and (c) but replace rule (d) by the following variant.

Rule d_k : If rule (d) produces a partition with k (nonzero) entries then delete the rightmost entry and increase the leftmost entry by 1.

We will refer to this modified algorithm as GDA_k .

Our motivation for the rule d_k comes from the theorem of Schensted mentioned earlier. Keeping the number of entries in a partition λ less than k prevents a decreasing subsequences of length k. The amazing fact is that this method prevents decreasing subsequences in the exact same manner as does $\phi^*!$

To see an example of the reformulation of ϕ^* consider:

Note that the partitions across the top and right hand side are identical with the partitions computed across the top and right hand side for $\phi^*(645321) = 214635$ in the previous section.

Definition: Let seq_k(π) be the sequence of partitions along the top and right borders of our board obtained by performing GDA_k .

31	32	33
21	22	32 ●
21	22	22
11	21 ●	21
11	11	11
1	1	1
Ø	Ø	Ø

Main Theorem: The sequence of partitions along the top and right borders of $GDA(\phi^*(\pi))$ is the same as that in $\text{GDA}_k(\pi)$.

Commutativity Result: The fact that $\phi^*(\pi^{-1}) = \phi^*(\pi)^{-1}$ is made clear by our main theorem. This is because both GDA and GDA_k clearly commute with inverses.

5.	Pro

From the two boards below we first see that seq_k is invariant under applications of our map ϕ . The proof of this observation is long and somewhat tech-As a result it occupies most of the paper. Modulo this result the nical proof of the main theorem is a straightforward induction that is outlined below.

Outline of Induction:

1. The red box is the smallest region containing markers moved by ϕ .

- 2. *The partitions along the red lines are the same. Therefore we have $\operatorname{seq}_k(\pi) = \operatorname{seq}_k(\phi(\pi)).$
- 3. By an inductive argument we conclude that $\operatorname{seq}_k(\pi) = \operatorname{seq}_k(\phi(\pi)) = \operatorname{seq}(\phi^*(\pi)).$

6. Primary References:

1. J. Backelin, J. West, G. Xin, Wilf-equivalence for singleton classes, Adv. Appl. Math. **38** (2007), 133-148.

2. J. Bloom and D. Saracino, Another look at pattern-avoiding permutations, Adv. Appl. *Math.* **45** (2010), 395-409.

3. M. Bousquet-Mélou, E. Steingrímsson, Decreasing subsequences in permutations and Wilf equivalence for involutions, J. Algebraic Combin. 22 (2005), 383-409. 4. S. Fomin, Generalized Robinson-Schensted-Knuth correspondence, Zapiski Nauchn. Sem. LOMI 155 (1986), 156-175.

5. S. Fomin, Schensted algorithms for dual graded graphs, *J. Alg. Comb.* **4** (1995), 5-45. 6.C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. Appl. Math. 37 (2006), 404-431. 7. B. Sagan, The Symmetric Group, second edition, Springer-Verlag, New York 2001. 8. D. Saracino, On two bijections from $S_n(321)$ to $S_n(132)$, to appear in Ars. Comb. 100 (2011).

9. C. Schensted, Longest increasing and decreasing subsequences, *Canad. J. Math* **13** (1961), 179-191.

10. M. Schützenberger, Quelques remarques sur une construction de Schensted, *Math. Scand.* **12** (1963), 117-128.

11. R. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, Cambridge, 1999.

oof: An Idea

Ø	1	11	21	31 •	41	33
Ø	1	11	● ²¹	21	31	32
Ø	•1	11	11	11	21	22
Ø	Ø	•1	1	1	11	21
Ø	Ø	Ø	Ø	Ø	• ¹	11
Ø	Ø	Ø	Ø	Ø	Ø	•1
Ø	Ø	Ø	Ø	Ø	Ø	Ø

 $\phi(\pi) = 435621$