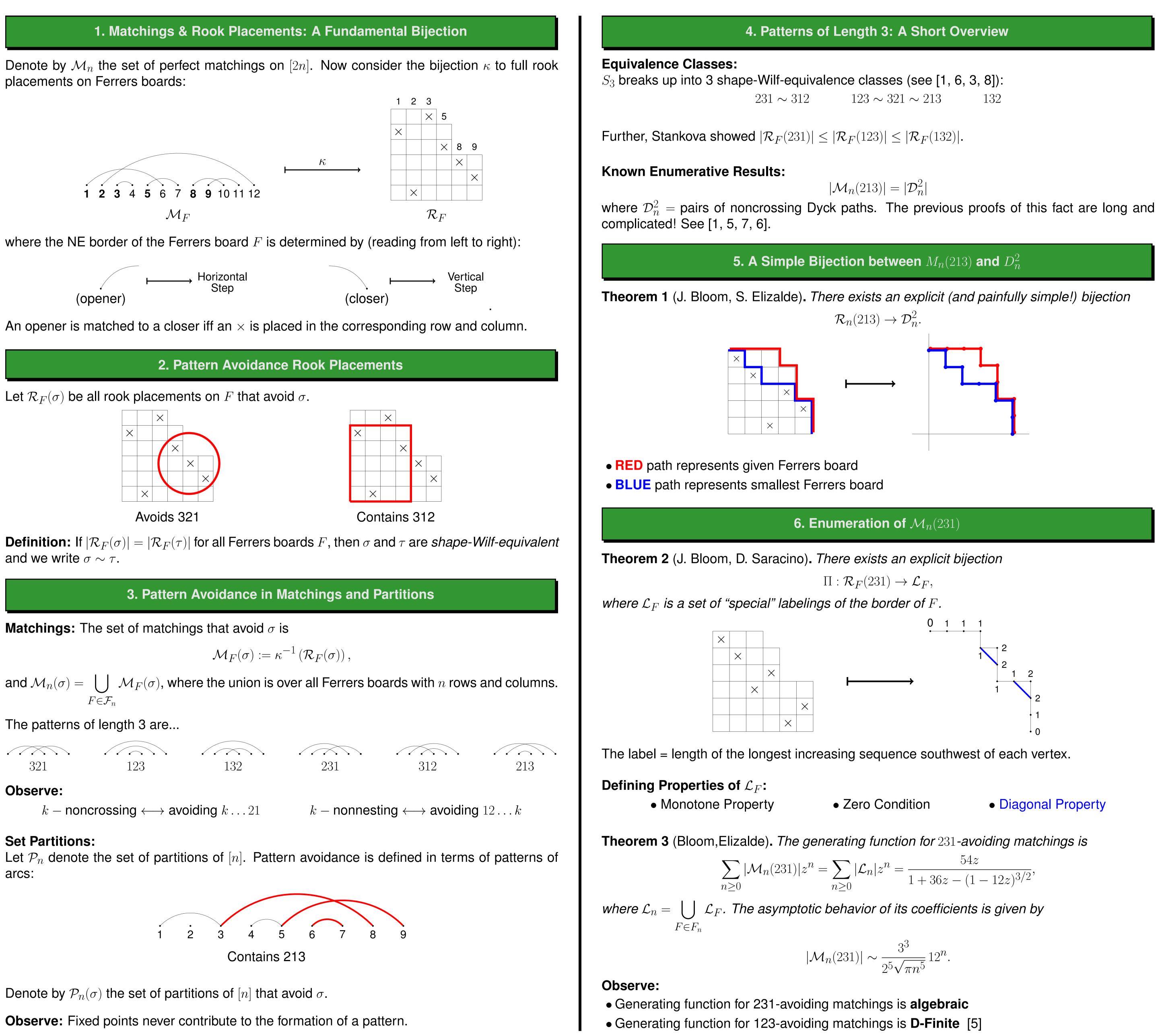
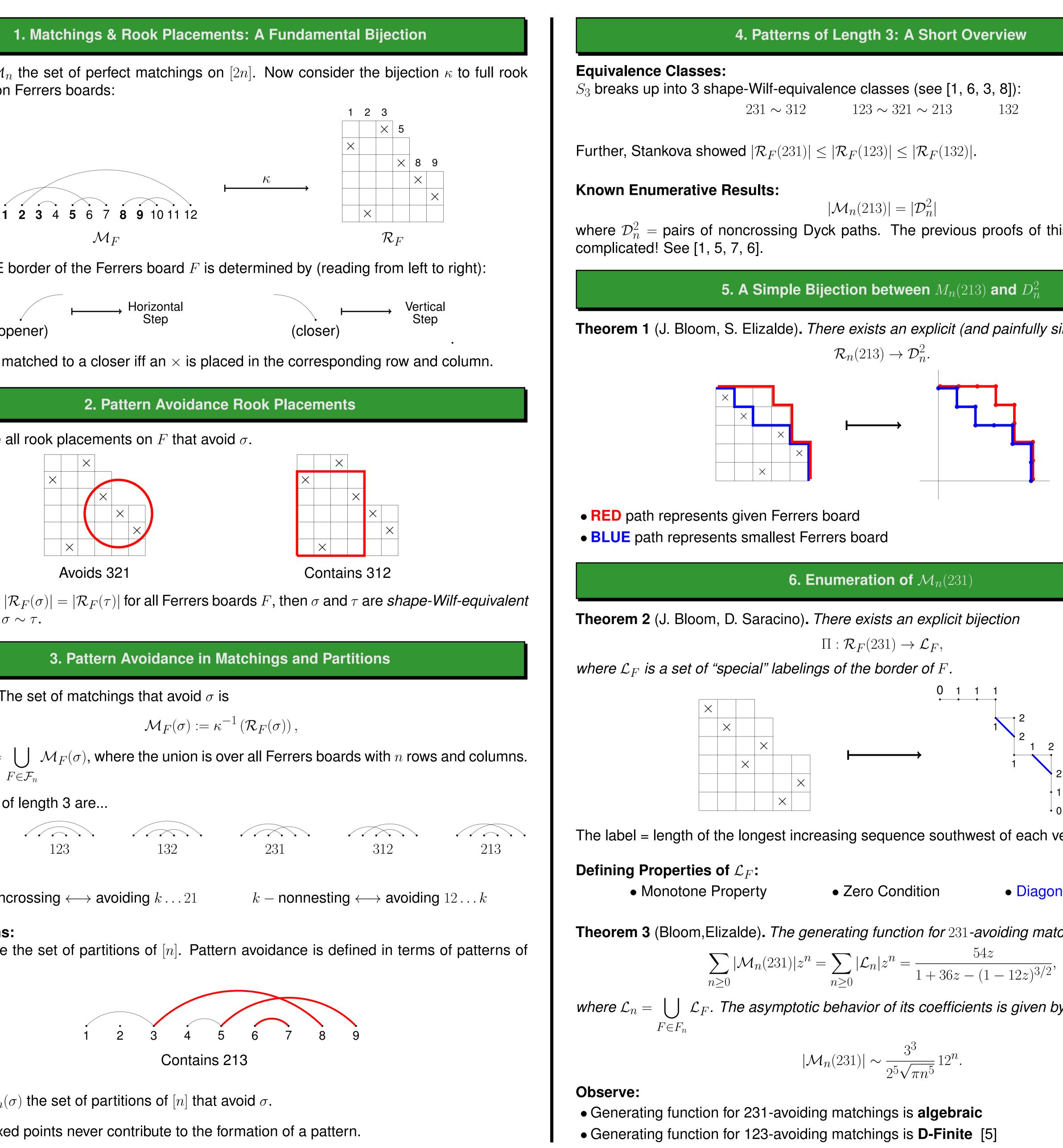


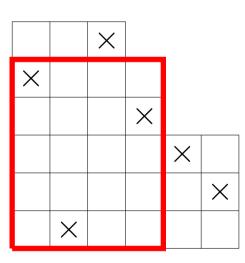
placements on Ferrers boards:





Let $\mathcal{R}_F(\sigma)$ be all rook placements on F that avoid σ .





and we write $\sigma \sim \tau$.

Matchings: The set of matchings that avoid σ is

$$\mathcal{M}_F(\sigma) := \kappa^{-1} \left(\mathcal{R}_F(\sigma) \right),$$

The patterns of length 3 are...

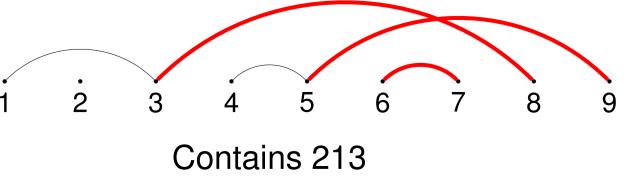
321	123	132	231	312

Observe:

 $k - \text{noncrossing} \longleftrightarrow \text{avoiding } k \dots 21$

Set Partitions:

arcs:



Denote by $\mathcal{P}_n(\sigma)$ the set of partitions of [n] that avoid σ .

Observe: Fixed points never contribute to the formation of a pattern.

Discrete Math Days, Wesleyan University, October 2013

Patterns in Matchings and Rook Placements

Jonathan Bloom and Sergi Elizalde

Department of Mathematics, Dartmouth College

Diagonal Property

7. Enumeration of $\mathcal{P}_n(231)$ **Set Partitions from Matchings:**

Choosing to merge "valleys" and add fix points translates into...

$$\sum_{n\geq 0} |\mathcal{P}_n(\tau)| z^n = \frac{1}{1-z} A\left(\frac{1}{z}, \frac{z^2}{(1-z)^2}\right),$$
$$A(v, z) = \sum_{n\geq 0} \sum_{M\in\mathcal{M}_n(\tau)} u^{\operatorname{val}(M)} z^n.$$

where

Theorem 4 (Bloom, Elizalde). The generating function $\sum_{n>0} |\mathcal{P}_n(231)| z^n$ for 231-avoiding partitions is a root of the cubic polynomial $1 \sqrt{2} 2 - 2 - 1 \sqrt{2} R^3 + (-0 r^5 +$

$$(z-1)(5z^2 - 2z + 1)^2 B^3 + (-9z^3 + 54z + (-9z^3 + 54z)) + (-9z^3 + 54z) + (-9z^3 + 52z) + (-9z^3 + 54z) +$$

The asymptotic behavior of its coefficients is given by

where $\delta \approx 0.061518$ and

 $\rho = \frac{3(9+6\sqrt{3})^{1/3}}{2+2(9+6\sqrt{3})^{1/3} - (9+6\sqrt{3})^{2/3}} \approx 6.97685$

Observe:

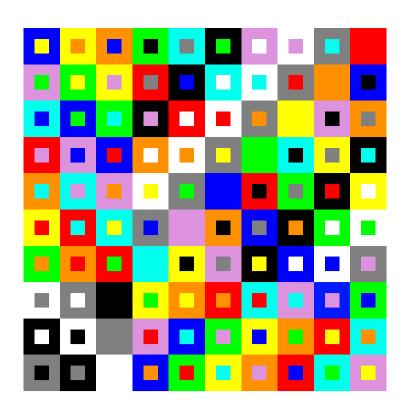
- Generating function for 231-avoiding partitions is **algebraic**
- Generating function for 123-avoiding partitions is **D-Finite** [4]

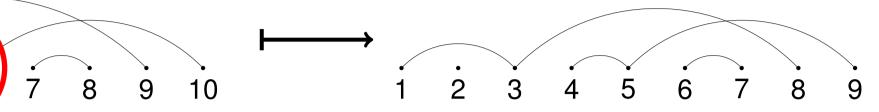
Class	Matchings	Set partitions
{123,213}	$\frac{4}{3+\sqrt{1-8z}}$	$\frac{2 - 3z + z^2 - z\sqrt{1 - 6z + z^2}}{2(1 - 3z + 3z^2)}$
$\{123,231\}$ & $\{123,312\}$	Solution of a cubic	Solution of a cubic
{123,321}	$\frac{1 - 5z + 2z^2}{1 - 6z + 5z^2}$	$\frac{1 - 10z + 32z^2 - 37z^3 + 12z^4}{(1 - z)(1 - 10z + 31z^2 - 30z^3 + z^4)}$
{213,321}	Functional equation	Unknown
$\{123,132\}$ & $\{132,321\}$	Unknown	Unknown

- Find a generating function for 132-avoiding matchings and set partitions.

- Math. Combin. Comput., to appear. B54e, 21 pp.
- Amer. Math. Soc. 359 (2007), 1555–1575.

- Appl. Math. 37 (2006), 404–431.





 $4z^4 - 85z^3 + 59z^2 - 14z + 3)B^2$ $(-9z^{4} + 60z^{3} - 64z^{2} + 13z - 3)B + (-9z^{3} + 23z^{2} - 4z + 1).$ $|\mathcal{P}_n(231)| \sim \delta n^{-5/2} \rho^n,$

8. Simultaneous Avoidance

9. Open Questions

References

[1] J. Backelin, J. West and G. Xin, Wilf-equivalence for singleton classes, Adv. in Appl. Math. 38 (2007), 133–148. [2] J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, *Elec. J. Combin.* 20 (2013), #P5. [3] J. Bloom and D. Saracino, A simple bijection between 231-avoiding and 312-avoiding placements, J. Combin.

[4] M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, Sém. Lothar. Combin. 54 (2005/07), Art.

[5] W. Chen, E. Deng, R. Du, R. Stanley and C. Yan, Crossings and nestings of matchings and partitions, *Trans.*

[6] V. Jelínek, Dyck paths and pattern-avoiding matchings, *European J. Combin.* 28 (2007), 202–213. [7] C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. in

[8] Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Alg. Combin. 15 (2002), 271–290.