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For example we write
c=45312

for the permutation (in 2-line notation)

1 2 3 45
4 5 31 2
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Permutations and Pattern Avoidance

We say a permutation o € S, contains a pattern 7 € Sy if ¢
contains a subsequence which is order-isomorphic to 7.

For example
c=45312contains =321
but does not contain 7 =1 2 3.

We write S,(7) for all permutations of length n which avoid .
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Permutations and Pattern Avoidance

Another classic result due to Backelin, West, Xin (BWX) is:
|Sn(12... kp)| = |Sn(k...1p)| for all n

where p is an permutation of {k+1,... k+ /}.

An important tool in their proof is the map
¢* 1 Sp— Sp(k...1)

which is the focus of this talk.
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Definition of the BWX map ¢*

First we define the (intermediate) map
¢:5,— S,

which is implicitly dependent on some fixed k > 2.
For any o € S,

» Take the smallest k... 1-pattern in ¢ and cycle these entries
forward leaving all other fixed.

For example if k =3 and 0 =4 5 3 1 2 then
$(c)=35142

Key Idea: ¢ removes the smallest k... 1 pattern.
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Definition of the BWX map ¢*

Now the map of interest
¢" Sy — Sp(k...1)

is obtained by repeatedly applying the map ¢ until no
(k...1)-pattern remains.



The commutativity of ¢*

It was first observed by Bousquet-Mélou and Steingrimsson that

") ="(0)



The commutativity of ¢*

It was first observed by Bousquet-Mélou and Steingrimsson that
o071 = ¢"(0) !

> Their proof is long and difficult.



The commutativity of ¢*

It was first observed by Bousquet-Mélou and Steingrimsson that
o071 = ¢"(0) !

> Their proof is long and difficult.

» They ask for an alternative description of the map ¢* “on
which the commutation theorem would become obvious.”



The commutativity of ¢*

It was first observed by Bousquet-Mélou and Steingrimsson that
o071 = ¢"(0) !

> Their proof is long and difficult.

» They ask for an alternative description of the map ¢* “on
which the commutation theorem would become obvious.”

Later, Krattenthaler published a bijection based on the standard
Growth Diagram Algorithm (GDA) which is similar in functionality
to ¢* and trivially commutes with inverses.



The commutativity of ¢*

It was first observed by Bousquet-Mélou and Steingrimsson that
o071 = ¢"(0) !

> Their proof is long and difficult.

» They ask for an alternative description of the map ¢* “on
which the commutation theorem would become obvious.”

Later, Krattenthaler published a bijection based on the standard
Growth Diagram Algorithm (GDA) which is similar in functionality
to ¢* and trivially commutes with inverses.

» He explicitly ask for a connection between ¢* and the GDA.
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Motivation for the Reformulation of ¢*

Recall the Schensted correspondence S, «— (P, Q) where P and
Q are tableaux of the same shape.

For example

45312 <+— (

‘-bwl—l
1N
‘\IO\I—l
N
~_

)

where the tableaux have common shape 221.

Theorem: The length of the longest decreasing subsequence in a
permutation is the number of parts in its corresponding shape.

» 4531 2is longest and likewise 221 has 3 parts.

Key Ildea

¢* removes k...1 patterns +— force shape to have < k parts.
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Fomin's Growth Diagram Construction

1 2 3
0 [ ]
1 2 2 3 4
0 [
1 2 2 3 31 31
0 [ ]
0 1 2 2 2 2 21| 211 221
[
0 1 1 1 1 1 11| 111} 211
o
1 11 21
0 0 0 0 0 0 °
1 2
0 0 [] [] [] [] 0 °
1 1
0 0 [] [] [] [] 0 °

Each corner of the Ferrers board is labeled a partition which is the
shape of the permutation southwest of that corner.
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» Start by assigning the empty partition ) on the left and bottom
edges of F.

ISR

00 0 0 0 0 0 0
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Local Rules for Growth Diagrams

Given partitions
NW

2 21 = SE U NW

if SE # NW

11 11 = NW 11 21 = NW + 1 top row

if SW = NW = SE

1 11 1 11

11 111 = NW + 001

if SW # NW = SE

1 11

Key Idea: Only the last rule can increase the number of parts of a

partition.
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Local Rules for Growth Diagrams

[}
1 2 2 3 4
0 ®
1 2 2 3 3] 31
0 (]
0 1 2 2 2 2 21f 211] 221
[ J
0 1 1 1 1 1] 11] 111] 211
®
1 11| 21
0 o 0 0 0 0 °
1 2
0 o 0 0 0 0 0 °
1 1
0 o 0 0 0 0 0 °

Def: Let seq(P, F) denote the sequence of partitions along the
“staircase” .

> seq(P,F) = (0,1,2,3,2,3,4,3,31,21,211,221,...,1,0)

Theorem: seq(P, F) uniquely determines P.
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21 = SE U NW

if SE # NW

11

11

11 = NW

if SW = NW = SE

11

11

111 = NW + 001

*if SW # NW = SE

11

11

21 = NW + 1 top row

11



Our Reformulation of ¢*

2 21 = SE U NW
if SE # NW
1 11
11 11 = NW 11 21 = NW + 1 top row
if SW = NW = SE L4
1 11 1 11

11 111 = NW + 001

*if SW # NW = SE

Modified Rule for GDA....

11 21

*if last rule rule makes |NE| > k then
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GDA3 on (P, F)

2 2 3 3 31

2 2 2 2| 21

22

32

1 1 1 1| 11

21

22

11

21

o o o o o 1 .2

o o o o o _1 1
[ ]

o 0o o 0o 0 0 0




Our Reformulation of ¢*

GDA3 on (P, F)

GDA on (¢*(P), F

)

2[ 3 2] 3
° [ ]
2 2| 3] 4 2 2 3] 4
[} [}
2 2 .3 3] 31 2 2] g3] 3] 3t
21| 22[ 32
.2 2 2| 2 1 2 2 2] 2] 21] 22 .32
1 1 1] 1 11| 21| 22 .2 2 2 2] 21] 22 22
0 0 0 0 .1 11| 21 1 1 1 1] 11 21] 21
1 2 2
ol o o o] 0 ° o o o o 1 .2
o o o o of 1 1 o o 0 0] o1 1 1
[ J [ J
o 0 0o 0 0 0 0 o o o o © 0 0




Our Reformulation of ¢*

GDAs on (P, F) GDA on (¢*(P), F)
o1 2] _3 0
° il 2 .3
1 2] 2 3] 4
] ° o 1] 2| 2] 3 .4
o[ 1| 2| 2 .3 3] 31 o 1] 2[ 2 o3 3|
0 1 2 2 2 2| 21| 22] 32 0 1 2 2 2 2| 21| 22| 32
[ [
0 .1 1 1 1 1 11 21) 22 0 1 .2 2 2 21 21 22| 22
1 11 21 21
ol o o o of 0 ° 0 .1 1 1 1 1] 11 21
2
o o o o of o o] 1 ° ol o o o o o 1 .2 2
o o o o of o o] 1 1 ol 0 o o 0] 0 o1 1 1
[ J [ J
o 9o 0o 0 0 0 0 0 0 o 0o 0o o 0 0 0 0 0

Main Theorem: For any rook placement P on a Ferrers board F,

seqk(P, F) :Seq((b*(P)aF)
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Our Commutation Result

Definition: Let P’ denote the inverse of a placement.

Note: seq(P’, F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,
¢*(P') = (¢"(P))’

Proof. By the Main Theorem and the note above we have:

seq(¢*(P'),F) = seq(P',F)
rev(seqk(P, F))
rev(seq(¢*(P), F)
= seq((¢"(P))', F)

Hence we conclude that ¢*(P’) = (¢*(P))’.



