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Wilf-equivalence

Notation
In general, for any σ ∈ Sk we denote by

Avn(σ)

the set of all permutations (length n) that avoid σ.

In this setting
σ is called a pattern.

We say two patterns σ, τ ∈ Sk are Wilf-equivalent provided

|Avn(σ)| = |Avn(τ)|

for all n. We write σ ∼ τ .

All patterns τ of length 3 are Wilf-equivalent. Moreover,

|Avn(τ)| =
1

1 + n

(
2n

n

)
.
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Patterns of length 4
We have:

Class|n 5 6 7 8 9 . . .

1 4 2 3 103 512 2740 15485 91245 . . .
1 2 3 4 103 513 2761 15767 94359 . . .
1 3 2 4 103 513 2762 15793 94776 . . .

Classic results

I There are exactly 3 Wilf-classes in S4
I Stankova (1994) proved that 1 4 2 3 ∼ 2 4 1 3

I Proof idea: Same recursive structure
I Only ad hoc Wilf-equivalence known for singleton patterns

New results

I We give (first) bijective proof that 1 4 2 3 ∼ 2 4 1 3
I Resolves a conjecture of Dokos, et al. (2012)

I REU group under Sagan
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Permutation Statistics

Consider the permutation π = 6 5 1 8 2 7 3 4

×
×

×

×

×

×

×
×

↑ ↑ ↑ ↑

×
××

↑ ↑ ↑

Some statistics:

I Descents are positions i such that πi > πi+1

I RL maxima are positions i such NE of πi we have nothing!

I − bonds
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Refined Wilf-equivalence

Fix any permutation statistic f .

We say two patterns σ, τ are
f-Wilf-equivalent, and write

σ ∼f τ,

provided there is a bijection Θ : Avn(σ)→ Avn(τ) that preserves
the f statistic, i.e.,

f = f ◦Θ,

or ∑
π∈Av(σ)

x |π|t f (π) =
∑

π∈Av(τ)

x |π|t f (π).

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

I Maj(π) is sum of descents of π.
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1423 ∼ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

Θ : Avn(1423)→ Avn(2413)

such that Θ preserves set of descents (hence Major index),

RL-maxima, -bonds, and position of n and n − 1. Additionally, if

π ∈ Avn(1423) ∩ Avn(2413)

then Θ(π) = π.

Note

I Θ is not the same as Stankova’s “implied” bijection.

I Stankova’s isomorphism does not preserve these statistics.
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Given π ∈ Avn(1423) it decomposes as:
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×

×
π(1) =

Θ(π(1)) =

A

A′

×

×
×π(2) =

Θ(π(2)) =

B

B ′

By induction,
Θ : Avn(1423)→ Avn(2413)

exists and preserves statistics

I Including RL maxima!

? Applying Θ to each part maintains structure!
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Lastly, we must stitch Θ(π(1)) and Θ(π(2)) back together...
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Doing this we obtain our final result:

Θ(π) =

×

×
×
×

A′

B ′



Egge’s Conjecture

Consider the following table

n = 2 3 4 5 6 7 . . .

Avn(2143, 3142) 2 6 22 90 395 1823 . . .
nth large Schröder # 2 6 22 90 394 1806 . . .

Question (Egge):
Are there any patterns τ ∈ S6 such that the sets

|Avn(2143, 3142, τ)|

are counted by the large Schröder numbers?
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Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix τ ∈ {246135, 254613, 524361, 546132, 263514}. Then

∑
n≥0
|Avn(2143, 3142, τ)|xn =

3− x −
√

1− 6x + x2

2
,

I Avn(2143, 3142, τ) is counted by the large Schröder numbers

I These values of τ (and 180◦ rotations) are only patterns

Proved...
I Burstein and Pantone proved τ = 246135

I simple permutations

I Bloom and Burstein proved the remaining 4 cases
I 263514: simple permutations
I 254613, 524361, 546132: decomposition using LR-maxima

I Similar flavor (more technical) to Θ : Av(1423) → Av(2413)
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I 263514: simple permutations

I 254613, 524361, 546132: decomposition using LR-maxima
I Similar flavor (more technical) to Θ : Av(1423) → Av(2413)



Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix τ ∈ {246135, 254613, 524361, 546132, 263514}. Then

∑
n≥0
|Avn(2143, 3142, τ)|xn =

3− x −
√

1− 6x + x2

2
,

I Avn(2143, 3142, τ) is counted by the large Schröder numbers

I These values of τ (and 180◦ rotations) are only patterns

Proved...
I Burstein and Pantone proved τ = 246135

I simple permutations

I Bloom and Burstein proved the remaining 4 cases
I 263514: simple permutations
I 254613, 524361, 546132: decomposition using LR-maxima

I Similar flavor (more technical) to Θ : Av(1423) → Av(2413)



Thank You!


