Math 350 Abstract Linear Algebra Final Exam Practice

For the first two problems, assume V is an n-dimensional complex vector space.

- 1. Let $N \in \mathcal{L}(V)$ be a nilpotent operator.
 - (a) Show that 0 is the only eigenvalue for N.
 - (b) Assuming V has Jordan basis $\mathcal{J} = \{v, Nv, \dots, N^k v\}$, with respect to N, find the dimension of the eigenspace corresponding to 0 for N. What is the dimension of the generalized eigenspace corresponding to 0 for N?
- 2. Assume $T \in \mathcal{L}(V)$ has characteristic polynomial $\rho_T(x) = (x-2)^2(x-3)$.
 - (a) Must T be diagonalizable?
 - (b) What if f(T) = 0, where f(x) = (x 2)(x 3). (Hint: Consider Jordan Form.)

For the remaining problems, assume V is an n-dimensional \mathbb{F} -inner product space.

- 3. Let U be a subspace of V and consider the projection operator $P = P_U$.
 - (a) Prove that P is a linear map.
 - (b) Prove that $||Px|| \leq ||x||$.
 - (c) Let $T \in \mathcal{L}(V)$ be another operator. Show that U is T-invariant if and only if PTP = TP.
- 4. Recall that an operator $U \in \mathcal{L}(V)$ is said to be **unitary** provided that

 $\langle Uv, Uw \rangle = \langle v, w \rangle$, for all $v, w \in V$.

Prove that any two eigenvectors for U, which correspond to distinct eigenvalues, are orthogonal.

(over)

1. Let V be an \mathbb{F} -inner product space and let $P \in \mathcal{L}(V)$ be such that $P^2 = P$ and

 $\|Pv\| \le \|v\|,$

for all $v \in V$. Prove that P is an orthogonal projection. (Hint: First prove that $\langle u, v \rangle = 0$ if and only if $||u|| \leq ||u + av||$ for all $a \in \mathbb{F}$.)