Math 350 Abstract Linear Algebra Practice Set #1

Let V and W be \mathbb{F} -vector spaces unless otherwise stated.

1. Is \mathbb{R}^2 an \mathbb{R} -vector space where addition and scalar multiplication are given by

$$(a,b) + (c,d) = (a+c,bd)$$
 and $s(a,b) = (sa,sb),$

where $s \in \mathbb{R}$?

- 2. Let V be an n-dimensional space over \mathbb{C} . Prove that V, viewed as a vector space over \mathbb{R} has dimension 2n.
- 3. Let \mathcal{M}_n be the \mathbb{R} -vector space of all $n \times n$ matrices with entries in \mathbb{R} . Define the map $\operatorname{Tr} : \mathcal{M}_n \to \mathbb{R}$ by

$$\operatorname{Tr}\left(\begin{bmatrix} a_{1} & & & * \\ & a_{2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & a_{n} \end{bmatrix}\right) = a_{1} + a_{2} + \dots + a_{n}$$

- (a) Prove $\operatorname{Tr} \in \mathcal{L}(\mathcal{M}_n, \mathbb{R})$.
- (b) Describe null Tr and determine its dimension.

4. Let

$$U = \{ p \in \mathcal{P}_{\leq n} \mid p(-x) = -p(x) \text{ for all } x \in \mathbb{R} \}$$

be the set of all odd polynomials and

$$W = \{ p \in \mathcal{P}_{\leq n} \mid p(-x) = p(x) \text{ for all } x \in \mathbb{R} \},\$$

be the set of all even polynomials.

- (a) Prove that U and W are subspaces of $\mathcal{P}_{\leq n}$.
- (b) Determine $\dim U$ and $\dim W$.
- (c) Conclude that $\mathcal{P}_{\leq n} = U \oplus W$.
- 5. Suppose V is finite-dimensional and fix $T \in \mathcal{L}(V, W)$. Prove that there exists some subspace U of V such that $U \cap \text{null } T = \{0_V\}$ and $\operatorname{ran} T = \{Tu \mid u \in U\}$. Conclude that

$$V = \operatorname{null} T \oplus U.$$