Math 350 Abstract Linear Algebra Homework Set #9

Inner Product Spaces

You may assume that (V, <, >) is a finite-dimensional \mathbb{F} -inner product space.

1. Assuming V is a real inner product space, verify that

$$< u, v > = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

2. Suppose that $\{e_1, \ldots, e_k\}$ is an orthonormal set in V. Show that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_k \rangle|^2,$$

if and only if $v \in \operatorname{span}(e_1, \ldots, e_k)$.

3. In this problem, assume $\mathbb{F} = \mathbb{C}$. We say an operator $U \in \mathcal{L}(V)$ is **unitary** provided that

$$\langle Uv, Uw \rangle = \langle v, w \rangle$$
, for all $v, w \in V$.

(a) Prove that U preserves length, i.e.,

$$||v|| = ||Uv||, \quad \text{for all } v \in V.$$

- (b) Prove the eigenvalues of a unitary operator lie on the unit circle in \mathbb{C} .
- (c) Using (b), prove that unitary operators are invertible.
- (d) In this part let $V = \mathbb{C}^n$ and \langle , \rangle be the usual dot product. Assuming $A : \mathbb{C}^n \to \mathbb{C}^n$ is a unitary (matrix) operator, prove the columns of A form an orthonormal basis for \mathbb{C}^n . Is the converse true? If so, prove it!
- 4. Let $P \in \mathcal{L}(V)$ be such that $P^2 = P$. Prove that if null $P \subseteq (\operatorname{ran} P)^{\perp}$, then P is an orthogonal projection. (Hint: First show that $V = \operatorname{ran} P \oplus \operatorname{null} P$.)